Low temperature measurement and control technique

H. Neumann

not for publication
Content

- Low temperature measurement
 - temperature scale ITS-90
 - calibration and fit interpolation
 - selection of low temperature sensors
 - TVO-sensor
 - Cernox-sensor
 - comparison TVO vs Cernox
 - Platinum-sensor
 - Silizium diodes (semiconductor)
 - Thermo couples
 - sensor selection
 - sensitivity-temperature resolution
 - two-wire versus four-wire-measurement
 - self heating and thermal boundary resistance
 - balancing the uncertainty due to self heating and voltage drop
Content

- Low temperature measurement
 - thermal EMF (electromotive force)
 - wiring for cryogenic instrumentation
 - thermal dumping – heat sink
 - electrical resistance in parallel – feed throughs
 - thermometer holder
 - comparison of joint conductance
 - sensor mounting – general rules
 - sensor mounting inside pipe
 - TVO sensor mounted on end of capillary
 - sensor mounting outside pipe
 - comparison between inside and outside mounting of sensor in pipes
 - influences on accuracy
 - general considerations of uncertainty
Content

- Pressure / Differential Pressure Measurements
 - thermo acoustic oscillations (TAO’s)
 - differential pressure sensor

- Mass flow measurement
 - orifice
 - classical venturi tube ISO 5167- 4
 - V-cone
 - coriolis
 - comparison

- Level measurement
 - continuously
 - discrete

- Cryogenic valves
 - specification
 - valve characteristic
 - valve sizing coefficient
Low temperature measurement

- application field
 - large facilities
 - small experimental facilities
- supply cable
 - thermal connection
 - vacuum feedthrough
 - connector brand
- installation
 - outside installation
 - inside installation
 - installation in bath
- reliability
- measurement system
 - current source
 - digital voltmeter
- boundary conditions
 - magnetic field
 - radiation
 - corrections
 - bake out temperature
- selection of sensors
 - work area
 - characteristic curve
 - geometry
 - time constant
- measurement uncertainty
 - systematic uncertainty
 - statistical uncertainty

required tolerance
Low temperature measurement –
Temperature scale ITS-90

- the International Temperature Scale was adopted 1990 by the International Committee of Weights and Measures

- temperature range 0.65 – 1358 K

- three constitutive elements:
 - a set of definitions or fixed points
 - a mathematical definition
 - an interpolating instrument
Low temperature measurement – temperature scale ITS-90

- definition temperature
 \[1 \cdot K = \frac{T_{TP, water}}{273.16} \]

- ITS 90 defined by He vapour pressure and fix points
 - \(0.65 \, K \leq T \leq 5 \, K \): vapour pressure \(^3\)He and \(^4\)He
 - \(T = 13.8033 \, K \): triple point hydrogen
 - \(T = 24.5561 \, K \): triple point neon
 - \(T = 54.3584 \, K \): triple point oxygen
 - \(T = 83.0858 \, K \): triple point argon
 - \(T = 234.3156 \, K \): triple point mercury
 - \(T = 273.16 \, K \): triple point water
 - \(T = 302.9146 \, K \): melting point gallium

- temperature scale is transferred from primary thermometers to secondary thermometers. Scale maintained by National Metrology Institute (NMI) such as NIST, NPL, PTB, IMGC

- the most common secondary thermometer is the high purity standard Platinum resistance thermometer (SPRT) or the Rhodium-Iron resistance thermometer (RIRT)
Low temperature measurement – temperature scale ITS-90

- reference temperature: triple point of water
Low temperature measurement – Calibration and Fit Interpolation

- commercially calibrated sensors should have calibrations traceable to international standards

- calibration uncertainty typically increases by a factor of 5 to 10 between the successive levels

- an interpolation method is required for temperatures between calibration points. Typically the uncertainties introduced by the interpolation function are in the order of 1/10 of the calibration uncertainty

*National Metrology Institute (NMI)
Low temperature measurement – Calibration and Fit Interpolation

- primary sensors
 - based on understood physics: ideal gas thermometer, vapor pressure thermometer, fix points
 - but: impractical - only calibration laboratories
- secondary sensors
 - needs to be calibrated from some primary standard sensors: interpolating thermometers - standard-Platin-sensor (Pt25) rhodium-iron-sensor (RhFe)
- working standard
 - interpolating thermometers: resistive thermometers, diodes, thermocouples

National Metrology Institute (NMI)
Low temperature measurement – selection of low temperature sensors

- **resistors**
 - resistors with negative temperature coefficient (NTC-sensors – semiconductors)
 - carbon-glass resistor (CGR)
 - cernox (CX)
 - carbon (Allen Bradley)
 - germanium (Ge)
 - carbon compound (TVO)
 - resistors with positive temperature coefficient (PTC-sensors – metal)
 - platinum (Pt)
 - rhodium-iron (RhFe)

- **diodes**
 - Si-diodes
 - GaAlAs-diodes

- **Other**
 - thermocouples
 - CLTS (Cryogenic Linear Temperature Sensor)
 - capacity thermometers
Low temperature measurement – selection of low temperature sensors

![Graph showing resistance and sensitivity of various sensors as a function of temperature.](image)
Low temperature measurement – TVO-sensor

- carbon - Al\textsubscript{2}O\textsubscript{3} Compound
- strong electrical leads
- weak point on the connection to the sensing element
- sensitive against bending and local pressure
- individual calibration necessary
- undefined geometrical shape
- calibration after potting necessary
- temperature range 2 – 370 K
Low temperature measurement – Cernox-sensor (CX)

- Zirconium sensing element on a sapphire substrate
- **CX-AA**
 - sensor element protected by means of copper canister
 - internal atmosphere: He
 - internal wiring: 50.8 µm diameter gold wires
- **CX-SD**
 - flat square shaped packages
 - internal atmosphere: vacuum
- **CX-BR**
 - bare sensor
 - very sensitive against overload
 - individual calibration necessary
- T-range: 0.1 – 420 K
Low temperature measurement – comparison TVO vs Cernox

Resistance characteristic curve
\[R = f(T) \]

Sensitivity characteristic curve
\[S = \frac{dR}{dT} \]
\[S = f(T) \]
Low temperature measurement – comparison TVO vs Cernox

- sensitivity to magnetic field

![Graph showing the sensitivity of TVO and Cernox to magnetic field.
Delta T vs magnetic field graph.
Cernox and TVO curves are depicted.
Temperature 4.2K is indicated on the graph.
]}
Low temperature measurement – comparison TVO vs Cernox

- temperature resolution

\[\Delta T = \frac{(\Delta U/U)T}{S_d} \]

- \(\Delta T \): temperature resolution
- \(\Delta U \): resolution voltmeter (quality of voltmeter)
- \(U \): voltage drop at sensor \((U = I \cdot R)\)
- \(T \): temperature
- \(S_d \): dimensionless sensitivity

\[S_d = \frac{T}{R} \cdot \frac{dR}{dT} \]
Low temperature measurement – comparison TVO vs Cernox

- assumption: digital voltmeter – resolution: 10µV

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3000</td>
<td>10</td>
<td>30</td>
<td>0.6</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1200</td>
<td>10</td>
<td>12</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1000</td>
<td>10</td>
<td>10</td>
<td>0.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3000</td>
<td>10</td>
<td>30</td>
<td>1</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Low temperature measurement – platinum-sensor (Pt)

- Pt100 sensors are industry standard available with different resistance at 273 K: **Pt100**, Pt500, Pt1000, Pt10000
- Electrical characteristics follow an industry standard curve from 73 K to 873 K with good sensitivity over this range
- Pt-sensors can also be used down to 20 K
- Inexpensive and require simple instrumentation
Low temperature measurement – silizium diodes (semiconductors)

Temperature range 1 – 500 K

Good choice for general-purpose cryogenic use, temperatures depend forward bias fast response, **constant current (10 μA)**, high sensitive against magnetic fields, **interchangeable** (they follow a standard curve), **available in robust mounting packages and probes**, **high self heating effect**, voltage across the diodes can be measured only in forward direction, less accurate also the long time stability, AC-noise-induced temperature can be prevalent in diodes.

Silicon diodes are easy and inexpensive to instrument, high sensitivity over limited range
Low temperature measurement – thermo couples

useful for low mass or differential temperature measurement

in-situ calibration necessary otherwise errors in the range 5 – 10 K occur

no self heating
Low temperature measurement – sensor selection

- quality of measurement
 - repeatability, resolution, sensitivity, uncertainty

- experimental design
 - related to the experiment and boundary conditions: physical size, temperature range, thermal response time, power dissipation

- environmental constrains
 - effects due to external conditions: magnetic field, vibration, mechanical impacts, vacuum, ionizing radiation

- utility requirements
 - costs, required expertise
Low temperature measurement – sensor selection

- remarks to environmental constrains
 - suitability in magnetic fields
 - magnetic fields can cause reversible calibration shifts
 - Cernox sensors are the first choice, diodes also Pt and RhFe have big shifts
 - suitability in ionizing radiation areas
 - radiation can produce temporary or permanent calibration shifts
 - suitability under vacuum conditions
 - bake out procedure performed in most high vacuum systems can be damaging
 the materials used in the construction, even the sensor withstands the bakeout
 temperature, the calibration may shift
 - some materials in the sensor for example Stycast at CX AA-Package get a
 leakage and may interfere with the high vacuum by acting as a virtual leak
 - Pt or RhFe sensors are recommended sensors for high baking temperatures
Low temperature measurement – sensor selection

- range of use
 - limited by three typical factors
 - the sensitivity must occur on a measurable level appropriate to the temperature range of use
 - materials like epoxy, solders insulators are useful at low temperatures but can break at higher temperatures
 - high temperatures can induce strain in the sensor due to changes in packaging materials or in the leads – resulting strain can cause a shift in the low temperature region
 - insulation of wiring must also be suitable for the temperature range
Low temperature measurement – sensitivity-temperature resolution

Sensitivity S is a quality of the sensor and a very strong function of temperature

resistors sensitivities \(S_R = \frac{dR}{dT} = \left\{ 0.1 \cdot \frac{\Omega}{K} - 10,000 \cdot \frac{\Omega}{K} \right\} \)

diodes sensitivities \(S_V = \frac{dV}{dT} = \left\{ 2 \cdot \frac{mV}{K} - 180 \cdot \frac{mV}{K} \right\} \)

dimensionless sensitivity (material specific parameter): \(S_d = \frac{T}{R} \cdot \frac{dR}{dT} = \frac{T}{R} \cdot S_R \)

temperature resolution: \(\Delta T = \frac{\Delta U}{U} \cdot \frac{T}{S_d} \)

with: \(\Delta U \): resolution voltmeter; \(U \): voltage drop on sensor, \(U = I \cdot R \);
\(T \): temperature of operation
Low temperature measurement – two-wire versus four-wire-measurement

Four-wire-measurement: the voltage sense located across the resistor - only the resistance of the sensor is measured and not the lead resistance.
Low temperature measurement – lead resistance

example \(R_L = 10 \, \Omega \) (5 \(\Omega \) each lead)

Error due to resistance: \(\Delta T_L = R_L / S \) (2-lead configuration)

<table>
<thead>
<tr>
<th>sensor</th>
<th>(T) [K]</th>
<th>(S) [(\Omega)/K]</th>
<th>(\Delta T = R_L / S) [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVO</td>
<td>300</td>
<td>1</td>
<td>10/1 = 10</td>
</tr>
<tr>
<td>TVO</td>
<td>4</td>
<td>600</td>
<td>10/600 = 0.02</td>
</tr>
<tr>
<td>CX</td>
<td>300</td>
<td>0.11</td>
<td>10/0.11 = 91</td>
</tr>
<tr>
<td>CX</td>
<td>4</td>
<td>1000</td>
<td>10/1000 = 0.01</td>
</tr>
<tr>
<td>Pt 100</td>
<td>70 - 300</td>
<td>0.4</td>
<td>10/0.4 = 25</td>
</tr>
<tr>
<td>Pt 500</td>
<td>70 - 300</td>
<td>2</td>
<td>10/2 = 5</td>
</tr>
<tr>
<td>RhFe</td>
<td>4 - 300</td>
<td>0.1</td>
<td>10/0.1 = 100</td>
</tr>
</tbody>
</table>

Si-diode temperature sensors:

T < 30 K: \(S \approx 26 \, mV/K \) \(\Rightarrow \Delta T \approx 40 \, mK \) (SI current: \(I = 10\mu A; \Delta T = R \cdot I / S \))

T > 30 K: \(S \approx 2.3 \, mV/K \) \(\Rightarrow \Delta T \approx 430 \, mK \)

Unless the lead resistance can be reduced in magnitude or the resultant error, a 4-lead measurement is recommended.
Low temperature measurement – self heating and thermal boundary resistance

Energie input
\[P_S = I^2 \cdot R_S \]

External heat source in case of insufficient thermal dumping of the leads

Energy transfer due to heat transmission
\[P_t = k \cdot A \cdot \Delta T \]

\[R_t : \text{thermal resistance} \]
\[R_t = (k \cdot A)^{-1} \]
\[P_t = \Delta T / R_t \]

\[P_S = P_t \]
\[I^2 \cdot R_S = \Delta T / R_t \]
\[\Delta T = I^2 \cdot R_S \cdot R_t \]
Low temperature measurement – self heating and thermal boundary resistance

Self heating – example

Cernox at 4 K
\[I = 10 \, \mu A, \, R_S = 3000 \, \Omega, \]
\[\Rightarrow P_S = 0.30 \, \mu W \]
with \(R_{t \text{Cernox } 4K} = 5 \, \text{mK} / \mu \text{W} \)
\[\Delta T = P_S \cdot R_t = I^2 \cdot R_S \cdot R_t \]
\[\Rightarrow \Delta T = 1.5 \, \text{mK} \]

TVO at 4 K
\[I = 10 \, \mu A, \, R_S = 3000 \, \Omega, \]
\[\Rightarrow P_S = 0.30 \, \mu W \]
with \(R_{t \text{TVO } 4K} = 1 \, \text{mK} / \mu \text{W} \)
\[\Rightarrow \Delta T = 0.3 \, \text{mK} \]

Si diode at 4 K
\[I = 10 \, \mu A, \, U_S = 2 \, \text{V}, \]
\[\Rightarrow P_S = 20 \, \mu W \]
with \(R_{t \text{Si } 4K} = 5 \, \text{mK} / \mu \text{W} \)
\[\Rightarrow \Delta T = 100 \, \text{mK} \]
Low temperature measurement – balancing the uncertainty due to self heating and voltage drop

- increasing excitation current indicates:
 - increasing uncertainty due to self heating
 - higher resolution of the voltage signal
 - improvement of signal / noise ratio

Balancing self heating - the voltage drop for TVO sensor
Low temperature measurement – thermal EMF (electromotive force)

SEEBECK coefficient of different materials in region of ΔT produces a thermal emf, even if no current is flowing.

solution: reversing polarity only for resistive sensors - diodes do not allow current reversal.

Example:: $U_{\text{EMF}} = 10 \mu V$

Error caused due EMF $\Delta T_{\text{EMF}} = U_{\text{EMF}} / (dU/dT)$ S: Sensitivity $(dU/dT) = S \cdot i$ i: Excitation current

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature</th>
<th>I</th>
<th>S</th>
<th>(dU/dT)</th>
<th>ΔT_{EMF}</th>
<th>ΔT_{EMF}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVO</td>
<td>300 K</td>
<td>10 μA</td>
<td>1 Ω/K</td>
<td>$1 \times 10 = 10 \mu V/K$</td>
<td>$\Delta T_{\text{EMF}} = 10/10 = 1 K$</td>
<td></td>
</tr>
<tr>
<td>TVO</td>
<td>4 K</td>
<td>10 μA</td>
<td>600 Ω/K</td>
<td>$600 \times 10 = 6 mV/K$</td>
<td>$\Delta T_{\text{EMF}} = 10/6000 = 0.0015 K$</td>
<td></td>
</tr>
<tr>
<td>CX</td>
<td>300 K</td>
<td>10 μA</td>
<td>0.1 Ω/K</td>
<td>$0.1 \times 10 = 1 \mu V/K$</td>
<td>$\Delta T_{\text{EMF}} = 10/1 = 10 K$</td>
<td></td>
</tr>
<tr>
<td>CX</td>
<td>4 K</td>
<td>10 μA</td>
<td>1000 Ω/K</td>
<td>$1000 \times 10 = 10 mV/K$</td>
<td>$\Delta T_{\text{EMF}} = 10/10000 = 0.001 K$</td>
<td></td>
</tr>
<tr>
<td>Pt100</td>
<td>300 K</td>
<td>1 mA</td>
<td>0.4 Ω/K</td>
<td>$0.4 \times 1 = 0.4 mV/K$</td>
<td>$\Delta T_{\text{EMF}} = 10/400 = 0.025 K$</td>
<td></td>
</tr>
<tr>
<td>Pt100</td>
<td>70 K</td>
<td>3 mA</td>
<td>0.4 Ω/K</td>
<td>$0.4 \times 3 = 1.2 mV/K$</td>
<td>$\Delta T_{\text{EMF}} = 10/1200 = 0.008 K$</td>
<td></td>
</tr>
<tr>
<td>RhFe</td>
<td>300 K</td>
<td>1 mA</td>
<td>0.1 Ω/K</td>
<td>$0.1 \times 1 = 0.1 mV/K$</td>
<td>$\Delta T_{\text{EMF}} = 10/100 = 0.1 K$</td>
<td></td>
</tr>
<tr>
<td>RhFe</td>
<td>4 K</td>
<td>3 mA</td>
<td>0.1 Ω/K</td>
<td>$0.1 \times 3 = 0.3 mV/K$</td>
<td>$\Delta T_{\text{EMF}} = 10/300 = 0.03 K$</td>
<td></td>
</tr>
<tr>
<td>Si Diode</td>
<td>300 K</td>
<td>10 μA</td>
<td>3 mV/K</td>
<td>$\Delta T_{\text{EMF}} = 10/3000 = 0.003 K$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si Diode</td>
<td>4 K</td>
<td>10 μA</td>
<td>30 mV/K</td>
<td>$\Delta T_{\text{EMF}} = 10/30000 = 0.0003 K$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermoelectric voltage coefficient with respect to copper

<table>
<thead>
<tr>
<th>Material</th>
<th>$\mu V/K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td><0.3</td>
</tr>
<tr>
<td>Constantan (copper-nickel)</td>
<td>40</td>
</tr>
<tr>
<td>Gold</td>
<td>0.5</td>
</tr>
<tr>
<td>Silver</td>
<td>0.5</td>
</tr>
<tr>
<td>Brass</td>
<td>3</td>
</tr>
<tr>
<td>Beryllium Copper</td>
<td>5</td>
</tr>
<tr>
<td>Aluminum</td>
<td>5</td>
</tr>
<tr>
<td>Kovar or Alloys 42</td>
<td>40</td>
</tr>
<tr>
<td>Silicon</td>
<td>500</td>
</tr>
<tr>
<td>Copper-Oxide</td>
<td>1000</td>
</tr>
<tr>
<td>Cadmium-Tin Solder</td>
<td>0.2</td>
</tr>
<tr>
<td>Tin-Lead Solder</td>
<td>5</td>
</tr>
</tbody>
</table>
Low temperature measurement – wiring for cryogenic instrumentation

- low thermal conductivity wiring to minimize heat load from higher temperature surroundings

- heat sinks leads as appropriate - minimize heat from higher temperature surroundings

- low thermal EMF materials (Keithley handbook on Low Level Measurements)

- twisted pairs for wiring for the reduction of AC-noise
Low temperature measurement – wiring for cryogenic instrumentation

Wiedeman-Franz law relates the thermal conductivity of a wire to its electrical conductivity and solutions using resistance wire or a good electrical conductor such as copper or silver to give a impedance for low self heating, will give similar passive heat leaks

Cryogenic wire is different from normal wire due to its low thermal conductivity and high electrical resistivity. Most common types are phosphor bronze and manganin but also copper wire are used
Low temperature measurement – wiring for cryogenic instrumentation

Table 1 – Wire Heat-Sinking Length Required to Thermally Anchor to a Heat Sink at Temperature T to Bring the Temperature of the Wire to Within 1 mK of T_{lower}

<table>
<thead>
<tr>
<th>Material</th>
<th>T<sub>s</sub> (K)</th>
<th>T<sub>s</sub> (K)</th>
<th>0.21 mm<sup>2</sup> (24 AWG)</th>
<th>0.032 mm<sup>2</sup> (32 AWG)</th>
<th>0.013 mm<sup>2</sup> (36 AWG)</th>
<th>0.005 mm<sup>2</sup> (40 AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>300</td>
<td>80</td>
<td>160</td>
<td>57</td>
<td>33</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>4</td>
<td>688</td>
<td>233</td>
<td>130</td>
<td>80</td>
</tr>
<tr>
<td>Phosphor bronze</td>
<td>300</td>
<td>80</td>
<td>32</td>
<td>11</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>4</td>
<td>38</td>
<td>13</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Manganin</td>
<td>300</td>
<td>80</td>
<td>21</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>4</td>
<td>20</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>304 SS</td>
<td>300</td>
<td>80</td>
<td>17</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>4</td>
<td>14</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Data from Lake Shore [2]

For accurate temperature readings, the sensor and its leads must be anchored so they are at the same temperature as the sample being measured.

Leads with heavy insulation (Teflon) and bigger dimensions minimize the potential for making a thermal short to the surroundings but resulting in more thermal conduction down the leads into the sensing element.

LakeShore

L₂ = (Heat-sinking length see Tabelle 1)

T₁ = 300K, L₁ = 250mm T_s - T₃ = 1mK

Low temperature measurement – thermal dumping – heat sink
Low temperature measurement – electrical resistance in parallel – feed throughs

- check the resistance in parallel before connecting the sensor
- if possible avoid flux; use glass fiber brush to clean the surface and to remove layers of oxides
- use heat shrink tubing for solder connections on electrical feed throughs
Low temperature measurement – thermometer holder

(a) Copper Bobbin

- Quad-lead 36 AWG phosphor-bronze wire
- Hole for mounting bolt
- Sensor leads are anchored by an epoxy coating

Indium or vacuum grease as contact agent to get a low thermal resistance to the surface

(b) Copper Block

- Temperature sensor soldered or glued to copper block
- Leads soldered to metallized pads or Beryllium-oxide heat-sink chip

Ekin: Experimental Techniques for Low Temperature Measurements (2007)
Low temperature measurement – comparison of joint conductance

S.W. Van Sciver, M.J. Niles, and J. Pfotenhauer

E Gmelin, et al.
Low temperature measurement – sensor mounting – general rules

- **three aspects:** proper mounting, proper connecting wiring, proper thermal anchoring
 - permanent mounting or for limited time
 - mechanical mounting using a spring loaded clamp is a common method
 - sensor could be changed or replaced – experimental method
 - thermal conductor: Apiezon, grease, vacuum grease, flat indium foil should be used between sensor and surface to enhance thermal contact
 - using Stycast increasing the thermal resistance and it is a more a permanent method
 - Stycast can stress diode packages and cause piezo resistive shift in the calibration curve
 - mounting in holes is a favorite method
 - cylindrical package is obviously better suited for insertion into a cylindrical cavity than a flat square shaped packages

providing good thermal contact between sensor and surface is essential
Low temperature measurement – sensor mounting inside pipe

- sensors are under the stress of the fluid
 - velocity, turbulence
 - static and dynamic pressure
- high reliable feed throughs are necessary
- sensor replacement needs opening of pipe
- measurement of stagnation temperature

![Graph and diagram showing enthalpy and stagnation point]
Low temperature measurement – TVO sensor mounted on end of capillary
Low temperature measurement – TVO sensor mounted on end of capillary
Low temperature measurement – sensor mounting outside pipe

- measurement of the surface temperature of the pipe
- additional thermal resistance between sensor and fluid
- very efficient radiation shield and proper sensor mounting necessary
- influences:
 - residual heat load
 - flow conditions

Temperature difference between temperature of the sensor T_s and temperature of the fluid T

$\Delta T = T_s - T$
Low temperature measurement – sensor mounting outside pipe
Low temperature measurement – comparison between inside and outside mounting of sensor in pipes

<table>
<thead>
<tr>
<th></th>
<th>inside mounting</th>
<th>outside mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>achievable accuracy</td>
<td>high</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>depending on homogenous temperature distribution</td>
<td>depending on residual heat load, vacuum conditions and flow conditions</td>
</tr>
<tr>
<td>local measurement of the fluid</td>
<td></td>
<td>several thermal resistances between sensor and fluid</td>
</tr>
<tr>
<td>temperature at the stagnation point of the sensor</td>
<td></td>
<td>integral measurement of the surface temperature of the piping</td>
</tr>
<tr>
<td>cost for manufacturing</td>
<td>of equal value</td>
<td>of equal value</td>
</tr>
<tr>
<td>cost for tests</td>
<td>high</td>
<td>less</td>
</tr>
<tr>
<td></td>
<td>thermal cycling, afterwards leak test of the feed through necessary</td>
<td>arrangement could be tested in advance on the work bench</td>
</tr>
<tr>
<td>skills of workers</td>
<td>high</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>special knowledge of feed through preparation and mounting</td>
<td>basic skills sufficient</td>
</tr>
<tr>
<td>reliability</td>
<td>risks of leaks</td>
<td>very high</td>
</tr>
</tbody>
</table>
Low temperature measurement – influences on accuracy

- caused by sensor
 - accuracy of calibration
 - stability
 - approximation error
- caused by measurement technique
 - voltage measurement (2 or 4 wire circuit)
 - current measurement, stability of current source
 - overheating (self-heating)
- caused by wiring
 - thermoelectric voltage
 - resistance in parallel
 - insulation resistance
 - cable routing (twisted or not)
 - heat conduction
- caused by sensor mounting
 - mounting inside pipe
 - mounting outside pipe
 - flow conditions
- boundary conditions of experiment
 - magnetic field
 - pressure
Low temperature measurement – general considerations of uncertainty

For example: a resistive thermometer measures only its temperature - the voltage drop on the resistive element

Uncertainties from random effects; random errors can be described and optimized with statistical methods.

Measurement results are approximations of the real value.

Think about the entire system not just the sensor.
Pressure / Differential Pressure Measurements

- **pressure measurement at room temperature**
 - risks of thermoacoustic oscillations
 - loss of dynamics of measurement
 - big selection of transducer
 - reliable

- **pressure measurement at cryogenic temperature**
 - less choice of transducer
 - change of sensitivity

PCB Piezotronics
Cryogenic pressure sensor
Serie 102A10
Pressure / Differential Pressure Measurements
– thermo acoustic oscillations (TAO’s)

thermo acoustic oscillations occur in cryogenic systems where a long tube open at the cold end is extended to the closed end at the warm boundary. TAO's can be very damaging, as the oscillations are accompanied by a considerable heat conduction down the tube. This can increase the heat leak of the system by several orders of magnitude.

example thermo acoustic oscillations: acoustic oscillation changes frequency and amplitude when capillary leaves liquid
Pressure / Differential Pressure Measurements – thermo acoustic oscillations (TAO’s)

\[\Delta = \frac{d}{2} \sqrt{\frac{c}{l \cdot \nu}} \]

\(T_w \): Temperature warm part
\(T_k \): Temperature cold part
\(d \): Diameter of capillary
\(c \): Velocity of sound cold
\(l \): length cold
\(\zeta \): Ratio length warm / length cold
\(\nu \): kinematic viscosity cold

prevention: change in geometry, reduce diameter at the cold end, insertion of a wire

Pressure / Differential Pressure Measurements

- comparison of pressure measurement at ambient temperature and at low temperature

example: sensor at 4.3K and at 300K, capillary d ~ 1 mm, l ~ 6 m

Pressure / Differential Pressure Measurements
- differential pressure sensor

Baumer Company

- thin-film sensor
- shift in sensitivity ~ 2 % between 300 K and 4.2 K
- sensitivity 0.12 mV / bar
- overpressure 2 · nominal pressure

![Graph showing output voltage vs. pressure for Baumer sensors.]
Mass flow measurement – orifice

according ISO 5167-2 with corner tappings
Mass flow measurement – classical venturi tube
ISO 5167-4

characteristics:
- cylindrical section D
- conical section 21^0
- cylindrical section d (throat)
- diameter ratio $\beta = d/D$
- throat ratio $l/d = 1$
- conical section angle $\theta = 7 - 15^0$ (diffuser)
- cylindrical section D

cone easier to manufacture than shape of quarter ellipse
Mass flow measurement – classical venturi tube
ISO 5167-4

\(\dot{m} \): mass flow rate

D: upstream internal pipe diameter

d: diameter of throat under working conditions

C: coefficient of discharge, \(C = f(\text{Re}) \)

\(\beta \): diameter ratio \(\beta = \frac{d}{D} \)

\(\Delta p_h \): differential pressure (pressure head)

\(\rho \): density of fluid, \(\rho = f(p, T) \)

\(\varepsilon \): expansibility factor

\(\tau \): pressure ratio \(\frac{p_2}{p_1} \) (throat pressure / upstream pressure)

\(\kappa \): isentropic coefficient, \(\kappa = f(p,T) \)

\[\dot{m} = \frac{C}{\sqrt{1 - \beta^4}} \cdot \varepsilon \cdot \frac{\pi}{4} \cdot d^2 \cdot \sqrt{2 \cdot \Delta p \cdot \rho} \]

\[\varepsilon = \sqrt{\left(\frac{\kappa \cdot \tau^2}{\kappa - 1} \right) \cdot \left(\frac{1 - \beta^4}{1 - \beta^4 \cdot \tau^2 / \kappa} \right) \cdot \left(\frac{1 - \tau^{(\kappa-1)/\kappa}}{1 - \tau} \right)} \]
Mass flow measurement – classical venturi tube
ISO 5167-4 – discharge coefficient C

$C = 5.05 \times (0.2 - e^{-\ln(Re)/2.194})$

5.5.3 Discharge coefficient of the classical Venturi tube with a machined convergent section

Classical Venturi tubes with a machined convergent section can only be used in accordance with this part of ISO 5167 when

- $50 \text{ mm} \leq D \leq 250 \text{ mm}$
- $0.4 \leq \beta \leq 0.75$
- $2 \times 10^5 \leq Re_D \leq 1 \times 10^6$

Under these conditions the value of the discharge coefficient C is

$C = 0.965$

Table B.2 — Values of the discharge coefficient C and the uncertainty as a function of Re_D

<table>
<thead>
<tr>
<th>Re_D</th>
<th>C</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×10^4</td>
<td>0.970</td>
<td></td>
</tr>
<tr>
<td>1×10^5</td>
<td>0.977</td>
<td>2.5</td>
</tr>
<tr>
<td>2×10^5</td>
<td>0.982</td>
<td>2.5</td>
</tr>
<tr>
<td>3×10^5</td>
<td>0.987</td>
<td>1.5</td>
</tr>
<tr>
<td>5×10^5 to 1×10^6</td>
<td>0.991</td>
<td>1</td>
</tr>
<tr>
<td>10^6 to 2×10^6</td>
<td>0.993</td>
<td>2</td>
</tr>
<tr>
<td>2×10^6 to 10^7</td>
<td>0.995</td>
<td>3</td>
</tr>
</tbody>
</table>

For low Reynolds numbers, the increase in the experimental results is not a Gaussian distribution, the mean deviation from the mean value of C being greater than that of greater values.

If $Re_D > 0.7$, there is a difference between the values of discharge coefficient and uncertainty for $Re_D = 3 \times 10^6$ recommended in this table and those in 5.5.3 and 5.7.2.
Mass flow measurement – classical venturi tube
ISO 5167-4 – permanent pressure loss

Relative pressure loss: \(\xi = \frac{\Delta p_p}{\Delta p_h} \)

\[
\xi = \frac{\Delta p_p}{\Delta p_h}
\]
Mass flow measurement – classical venturi tube
ISO 5167-4 – pressure measurement equipment

Leak test procedure necessary:
High static pressure load
there should be no indication of
differential pressure
otherwise leaks in the auxiliary
equipment
Mass flow measurement – classical venturi tube
ISO 5167-4

- influences on the uncertainty budget
 - manufacturing defects - prevention or reduction by calibration

- selection of β-ratio: reduction at low β-ratio

- static hole problem - prevention or reduction by geometrical layout of pressure measuring connectors

- flow distortion - prevention or reduction by upstream length, conditioner

- flow pulsation - prevention or reduction by pump system, stable controller

- capillary effects - prevention or reduction by high pressure head
Mass flow measurement – V-cone

- **advantages**
 - pressure drop = 50% of pressure head
 - flow coefficient constant
 - calibration is included by manufacturers

- **disadvantages**
 - nominal diameter of 15 mm is the smallest (how far we know)
Mass flow measurement – coriolis mass flow meter

- measuring span: 1:50
- high pressure loss
 - recommendation: use of devices with higher nominal mass flow to reduce pressure drop
Mass flow measurement – comparison

<table>
<thead>
<tr>
<th></th>
<th>venturi</th>
<th>orifice</th>
<th>V-cone</th>
<th>coriolis</th>
</tr>
</thead>
<tbody>
<tr>
<td>space requirements</td>
<td>in pipe mounting</td>
<td>in pipe mounting</td>
<td>in pipe mounting</td>
<td>additional space</td>
</tr>
<tr>
<td>straight upstream length</td>
<td>effects of upstream conditions</td>
<td>effects of upstream conditions</td>
<td>effects of upstream conditions</td>
<td>no effects of upstream conditions</td>
</tr>
<tr>
<td>connections</td>
<td>capillaries</td>
<td>capillaries</td>
<td>capillaries</td>
<td>electr. wiring</td>
</tr>
<tr>
<td>reliability</td>
<td>very high</td>
<td>very high</td>
<td>very high</td>
<td>no info.</td>
</tr>
<tr>
<td>investment cost</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>operation cost</td>
<td>less</td>
<td>high</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>magnetic field influence</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>dynamic measurements</td>
<td>errors due frequency amplitude</td>
<td>errors due frequency amplitude</td>
<td>errors due frequency amplitude</td>
<td>depending on frequency</td>
</tr>
<tr>
<td>uncertainty</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>pressure overload</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>medium</td>
</tr>
</tbody>
</table>
Level measurement – continuously
superconducting wire level device

The active element of the probe is a Niobium-Titanium (NbTi) wire, superconductivity transition temperature is above the boiling point of liquid helium.

NbTi-wire enclosed in a perforated protection tube (different diameters and materials available)

Current in the range of ~100 mA. At the start of measurement the probe is excited by a boost current (~200 mA)

The voltage drop across the probe is a function of the depth of immersion.

The selection of the boost current and the measuring current is a very tricky affair as large helium losses can occur if high current is left on continuously

Useful:
Sample and Hold-Function to reduce losses. Sensor burnout protection during operation in vacuum necessary.

Heat losses:
Probe length 1m, $i = 0.1A$
immersed in LHe 10 %,
Resistance of probe ~500 Ω

$P_L = 0.1^2 \times 500 = 5$ W
Level measurement – continuously

Capacitive probe

Recommended for LN$_2$, LH$_2$

\[\left(\frac{\varepsilon_L}{\varepsilon_G} \right)_{N_2} = 1.43 \]
\[\left(\frac{\varepsilon_L}{\varepsilon_G} \right)_{Ne} = 1.19 \]
\[\left(\frac{\varepsilon_L}{\varepsilon_G} \right)_{H_2} = 1.40 \]

But not recommended for LHe

\[\left(\frac{\varepsilon_L}{\varepsilon_G} \right)_{He} = 1.04 \]

Big influence of parasitic capacitance of the wiring

Usefull is compensation of the wiring capacity

Homemade sensor with transducer from VEGA-Company
Level measurement – discrete

using Pt100 or TVO-sensors

Operation current must be sufficient to self heat the sensor in vapor but not in liquid. Operation current in the range of some mA.

Sensors should be small to minimize heat generation in liquid.

High overload capability of the sensor necessary
Cryogenic valves
Cryogenic valves – specification

- valve size diameter nominale DN
- pressure nominal PN
- control – shutoff valve
- normally closed or open
- K_v (C_v) – value
- plug in profile: linear, equal percentage or others
- cryogenic length
- Cu thermal flange to contact the thermal shield
- valve actuator manual, pneumatic or electrical
- fail function in case off loss energy supply
- leak tightness over the seat or to the atmosphere
- switches to indicate the position
Cryogenic valves – valve characteristic

![Graph showing relative flow coefficient K_v vs. relative valve travel.](chart.png)

- **Fast opening**
- **Linear flow**
- **Equal percentage**

Relative flow coefficient K_v [%] vs. Relative valve travel [%]

[6]
Cryogenic valves – valve sizing coefficient

Digital (on/off)

Linear flow (linear)

Equal percentage (= %)

![Image of flow characteristics](image)

$K_V = 0.865 \cdot C_V$

K_V (or C_V) is a valve sizing coefficient determined experimentally.

K_V – value is a valve sizing coefficient determined experimentally for each style indication of how many water m^3/h under the differential pressure of 1 bar at room temperature will flow through the valve at the respective flow.

K_{VS} – value Indication of how many water m^3/h under the differential pressure of 1 bar at room temperature will flow through the valve at the respective flow at 100 % stroke.

K_{VR}-value Smallest flow coefficient at with the gradient tolerance is still complied with.

Range ability $S_R = K_{VS} / K_{VR}$: The range of the largest to the smallest coefficient within which the deviation from the specified flow characteristics does not exceed the limits (common value $S_R = 50$).

\[
K_V = \dot{V} \cdot \sqrt{\frac{1}{\Delta p_V} \cdot \frac{\rho}{\rho_0}}
\]
Thank you for your attention!

references