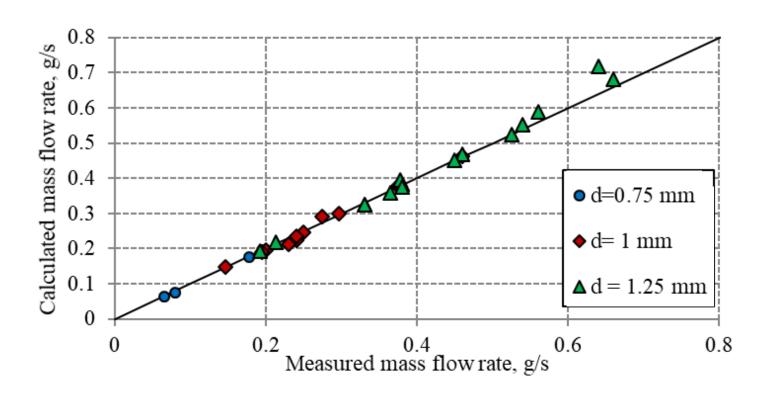


WP3 – Release and mixing: UU update

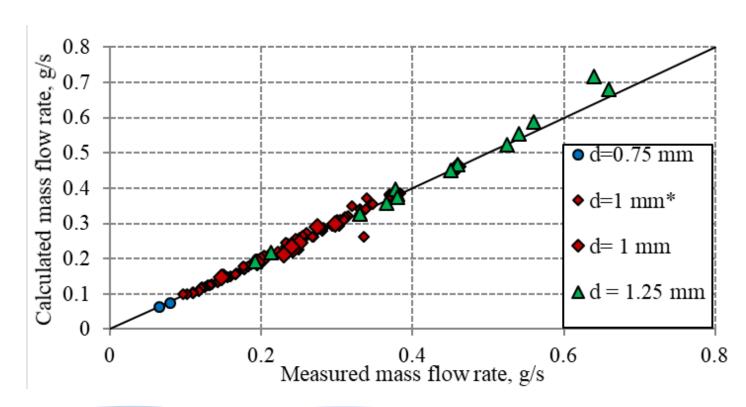
2nd Project meeting, Paris, 17th October 2018 Donatella Cirrone (UU)

WP3 - Activities plan


- Analysis of the applicability of notional nozzle theory and volumetric release source concept for prediction of concentration decay in cryogenic under-expanded jets:
 - Low pressure releases (P < 10 bar)
 - High pressure releases (P > 10 bar): E3.1-KIT and previous experiments
- Perform simulations of experiments on multi-phase releases:
 - Contemporary engineering tool for evaluation of mass flow rate from LH2 tank
 - Inclusion of conjugate heat transfer
- Studies on formation of cryogenic mixtures of H2/O2 and H2/air (connected to WP4-Ignition)

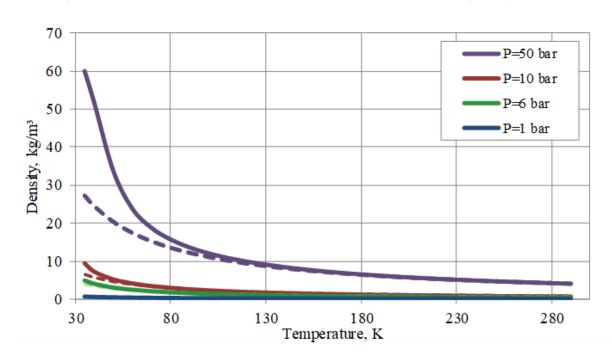
Cryogenic hydrogen releases (1/2) PRES

The notional nozzle theory developed at Ulster was employed to model cryogenic and warm hydrogen releases by SNL from:


- Storage pressure = 2 6 bar abs
- Storage temperature = 48 295 K
- Orifice diameter = 0.75, 1.00, 1.25 mm

Cryogenic hydrogen releases (1/2) PRES

The notional nozzle theory developed at Ulster was employed to model cryogenic and warm hydrogen releases by SNL from:


- Storage pressure = 2 6 bar abs
- Storage temperature = 40 295 K
- Orifice diameter = 0.75, 1.00, 1.25 mm

Cryogenic hydrogen releases (2/2) PRESI

Validity of Abel-Noble equation of state (EOS) for cryogenic releases: Abel-Noble EOS (--) is compared to NIST EOS (—).

- Deviation is negligible for the range of pressure under study (2-6 bar) whereas it becomes significant as the pressure increases.
- Extension of the study to prediction of concentration decay for low pressure releases and modelling of high pressure cryogenic releases.