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ABSTRACT 

Experiments were performed on the influence of oxidants (air, pure oxygen O2 and pure nitrous oxide 

N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen 

spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been 

researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition 

phenomenon is observed with a high speed camera and the external overpressures are measured. 

Numerical simulations have also been conducted with the high resolution CFD approach detailed 

chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions 

and the experimental data.  

1.0 INTRODUCTION 

Literature reports the existence of multiple spontaneous ignitions of hydrogen leaks without any 

apparent reason [1]. In 2007, Dryer et al. [2] for the first time experimentally demonstrated that a 

hydrogen spontaneous ignition could be obtained by a high pressure hydrogen release in a straight 

tube filled with air. 

From 2007 up to nowadays, the spontaneous ignition of hydrogen was extensively investigated 

experimentally [3-9]. The experimental studies were mainly aimed at the understanding of an ignition 

of hydrogen released through extension tubes of different lengths and diameters for different initial 

pressures. Some authors also studied the influence of alternative designs of a classical cylindrical 

extension tube:  tube with varying cross sections, local enlargement, perforated channel, two 

dimensional ducts, T shaped channel, diaphragm rupturing conditions [10-16]. The influence of the 

addition to the hydrogen of different gases (methane and nitrogen) was also recently investigated [17-

19]. Generally, the higher initial pressure, the longer tube length and the smaller its diameter the easier 

is the ignition of hydrogen. On the contrary, hydrogen dilution makes the ignition more difficult [17-

18]. 

In numerical investigations [20-30], researchers mainly focussed on the modelling of the available 

experiments with codes coupling chemical kinetics of ignition and fluid dynamics of compressed 

flows.  

However, none of the referred papers tried to investigate the influence of the composition of different 

gas in the atmospheric straight tube after the disk burst prior to the release. Different gases as oxidizers 

(air, oxygen O2, nitrous oxide N2O), inert (nitrogen, helium) or even fuels (C2H4, C2H2) can be 

considered as an ambient gas at atmospheric conditions to fill the pipeline just after the burst disk 

rupture. The choice of nitrous oxide and acetylene is caused by their thermodynamically unstable 

nature.  
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They have positive free enthalpy and then they can decompose exothermically following the reactions: 

N2O ➔ N2 + ½ O2 (ΔH = + 82 kJ/mole), (1) 

C2H2 ➔ H2 + 2 C  (ΔH =+226 kJ/mole) (2) 

The advantage to use N2O and C2H2 as an ambient atmosphere is their exothermicity with the 

difference that N2O is strong oxidizer and C2H2 is a fuel.   

The purpose of this paper is to investigate the spontaneous ignition process of high-pressure hydrogen 

release to modified atmosphere composed of oxygen, nitrous oxide and acetylene. 

2.0 EXPERIMENTAL SETUP 

Experiments are performed using an experimental setup designed and previously used for studying of 

hydrogen spontaneous ignitions in air [5]. 

The setup (Fig. 1 A, B) consists of a release tube of 4 mm internal diameter connected via a rupture 

disk to a cylindrical storage vessel of 0.37 L volume filled with hydrogen at a high pressure. A 

compressed air or helium driven valve (DN 4 mm) with a valve opening time lower than 2 ms works 

as a leak opening tool in all experiments. The thickness of the aluminium membrane used as a burst 

disk is adjusted to required hydrogen release pressure (see Fig. 2). 

 

 

Figure 1. Scheme of the experimental setup (A - general view; B - burst disk details)  

(A) 

(B) 
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Figure 2. Dependence of burst pressure on thickness of the burst membrane.  

For experiments, the vessel is pressurised up to the working pressure and then the rapid valve is 

opened. Hence the pressure increases above the disk rupture pressure leading to a disk burst and then 

to a release of hydrogen into the extension tube connected to ambient atmosphere. Depending on the 

pressure and on the nature of the gas in the extension tube, a spontaneous ignition of the high pressure 

hydrogen release can occur. 

For experiments with a reactive test-gas (O2, N2O and C2H2) in the extension tube, a small vessel (0.3 

L) filled by this test-gas at the initial pressure of 2.5 bar is connected via a capillary to the extension 

tube [A] (see Figure 3). To avoid perturbations of the experiment, the capillary is extracted by a 

horizontal movement from the extension tube [B] at the end of the filling. Finally, the test-gas vessel is 

rotated to remove the capillary from the nozzle exit [C]. A side view of three stages of a test 

preparation are shown in Fig. 3, bottom. 

 

 

Figure 3. Realization of the injection of the test-gas in the extension tube (top - general scheme; 

bottom - an example of a capillary extraction at 49 bar H2 in N2O).  

A high speed pressure gauge inside the 0.37 L storage measure the pressure decay after membrane 

burst. A high speed camera and a focalized photo sensor record the ignition. 
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3.0 EXPERIMENTAL RESULTS 

An example of experimental results is given on Fig. 4 for pressure of 12 bar within the extension tube 

filled with O2. Figure 4, left shows a sequence of high speed images of ignited hydrogen release at the 

frame rate of 20000 fps. High intensity light signal confirms the ignition of high pressure hydrogen 

released through extension tube filled with oxygen (Fig. 4, right). The combustion process in Fig. 4, 

left corresponds to afterburning of ignited hydrogen jet in ambient air. 

 

Figure 4. Experimental results for pressure of 12 bar within the extension tube filled with O2.  
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Figure 5. The lowest  experimental pressures for spontaneous ignition 
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As shown on Fig. 5, experimentally is found that for a 4 mm tube diameter with a 100 mm length 

filled with different gases the lowest hydrogen pressure leading to spontaneous ignition is :  

• 27 bars in air 

• 12 bars in pure oxygen  

• 49 bars in nitrous oxide 

• No ignition is observed up to 230 bars for acetylene.  

The pressure of 27 bars obtained for air is in good agreement with the previous published studies [2, 5, 

7]. When there is oxygen is the extension tube, the minimum successful pressure is reduced to 12 bars 

showing the acceleration effect of the partial pressure of oxygen on the chemical kinetic of the 

ignition. When there is nitrous oxide in the extension tube, this pressure increases to 49 bars. Then 

even if nitrous oxide could be considered to O2 enriched air (with 33% O2), it shows that an important 

part of the shock energy is consumed to initiate the decomposition of the nitrous oxide. With acetylene 

in the extension tube, the energy generated by decomposition of acetylene in the shock wave is not 

sufficient to heat hydrogen up to a sufficiently high temperature to generate auto-ignition in air outside 

the extension tube. 

All observed successful ignition events lead to an attached jet fire.  

Experiments without burst disk are also performed. In this case, the hydrogen release is generated by 

the opening of the high speed valve. No ignition is observed for hydrogen pressure up to 250 bar with 

air in the extension tube. This result is in good agreement with the observations of [15] and [16] on the 

diaphragm rupture rate. The same configuration is used with O2 and N2O in the extension tube and it is 

impossible to produce an ignition in this conditions.  

  

4.0 NUMERICAL RESULTS 

Numerical simulations are conducted using the modified version of KIVA-3V developed by Wen and 

co-workers [20, 21]. The code uses the high-order weighted essentially non-oscillatory (WENO) 

shock-capturing schemes [31]. Exploiting the symmetric nature of the problem and the limitation of 

current computing resources, two-dimensional simulations are performed. The numerical schemes are 

based on an arbitrary Lagrangian and Eulerian (ALE) method [32] in which convective terms are 

solved separately from the other terms. Each time cycle is divided into two phases: a Lagrangian phase 

and a rezone phase. Considering the substantial scale difference between diffusion and advection, 

different numerical schemes are adopted in the two phases. In the Lagrangian phase, a second-order 

Crank-Nicolson scheme is used for the diffusion terms and the terms associated with pressure wave 

propagation, a 3
rd

-order TVD Runge-Kutta method [33] is used in the rezone phase to solve the 

convective terms. The coupled semi-implicit equations in the Lagrangian phase are solved by a 

SIMPLE type algorithm with individual equations solved by a conjugate residual method [34]. For 

spatial differencing, a 5
th
-order upwind WENO scheme [31] is used for the convection terms and the 

second-order central differencing scheme is used for all the other terms. 

A mixture-averaged multi-component approach [35] is used for the calculation of molecular transport 

with consideration of thermal diffusion which is important for non-premixed hydrogen combustion. 

For auto-ignition chemistry, Saxena and Williams’ detailed chemistry scheme [36] which involves 21 

elementary steps among 8 reactive chemical species is applied. The scheme was previously validated 

against a wide range of pressures up to 33 bar. It also gave due consideration to third body reactions 

and the reaction-rate pressure dependent “falloff” behavior. Since high-pressure hydrogen release 

undergoes strong under-expansion after discharging into an open space, a detailed chemistry allowing 

for the pressure dependant reaction rate is essential to accurately predict chemical reaction rates. To 
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deal with the stiffness problem of the chemistry, the chemical kinetics equations are solved by a 

variable-coefficient ODE solver [37].  

Since spontaneous ignition first occurs inside release tubes, the present study is limited to the flow 

inside the release tube. The computational domain is composed of a cylindrical high-pressure vessel of 

large diameter and a release tube. The pressurized cylinder is set up to be sufficiently large to ensure 

that pressure drop during simulations does not exceed 3% of the initial pressure. The release tube has a 

diameter of 4 mm and a length L of 10 cm. An Iris model [20] is used to simulate the rupture process 

of the pressure boundary. It assumes that the pressure boundary, which is mimicked by a thin 

diaphragm with a thickness of 0.1mm, ruptures linearly from the centre at a finite pre-determined rate 

as simulations start. All the solid surfaces (e.g. walls) are assumed to be non-slip and adiabatic. Non-

uniform grids are applied to the regions of pressurized cylinder and uniform grids to the tube region. 

Since ignition is first initiated at the thin contact region or inside the thin boundary layer, a very fine 

grid resolution is required there to resolve the species profiles in the ignited flame. In this study, a 

uniform10 micron grid size is used inside the release tube and the total grid points are approximately 4 

millions. The key parameters of the computed release scenarios are summarized in Table 1. 

Table 1 Computational details 

Parameters Values 

Rupture time (µs) 5 

Release pressure (bar) Air: 30, 45, 50; Oxygen:25, 30, 35 

Initial temperature (K) 293 

Initial diameter of tube (mm) 4 

Length of tube (mm) 100 

Thickness of film(mm) 0.1 

Minimum grid spacing (µm) 10  

 

Numerical simulations are conducted for three cases involving releases into air and three cases for 

releases into pure oxygen. The predictions for the six simulated cases are listed in Fig. 6. 

   

             Release into air                                        Release into oxygen 

Figure 6. Modelling of spontaneous ignition in different atmospheres 

The experimental ignition limits are respectively 27 bar and 12 bar for air and oxygen. Current 

predictions are much higher than the measured values. The discrepancies are thought to be caused by 

the limitation in the wall treatment in the current code, i.e. it does not resolve the wall boundary layer 

and predict the heat production resulting from the wall friction. It is likely that the ignition should first 

occur inside the wall boundary layer and the roughness of tube wall might also play an important role 

in the propensity to ignition.  
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5.0 CONCLUSIONS 

Experiments are performed to investigate the influence of oxidants (air, pure oxygen O2 and pure 

nitrous oxide N2O at atmospheric pressure) in the extension tube after the burst disk on the hydrogen 

spontaneous ignition. For the tube of 4 mm diameter and of 10cm length, the lowest pressures at 

which the spontaneous ignition is observed are 27, 12 and 49 bars respectively for air, pure oxygen 

and nitrous oxide in the extension tube. Experiments without a high speed valve instead of a 

diaphragm fail to produce ignition whatever the oxidant is (air, pure oxygen and nitrous oxide). 

Numerical simulations are also performed using a high resolution CFD approach. Simulations are in 

reasonable with the experiments, however predictions are higher than the measured values, due to the 

fact the boundary layer is not resolved in simulations. 
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