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ABSTRACT 

Deflagration-to-Detonation Transition Ratio (DDTR) is an important parameter in measuring the hazard 

of hydrogen detonation at given thermodynamic conditions. It’s among the major tasks to evaluate 

DDTR in the study of hydrogen safety in a nuclear containment. With CFD tools, detailed distribution 

of thermodynamic parameters at each instant can be simulated with considerable reliability. Then DDTR 

can be estimated using related CFD output. For stochastic or epistemic reasons, uncertainty always exists 

in input parameters during computations. This lack of accuracy can finally be reflected in the uncertainty 

of computation results, e.g. DDTR in our consideration. The analysis of the influence of the input 

uncertainty is therefore a key step to understand the model’s response on the output and possibly to 

improve the accuracy. The increase of computational power makes it possible to perform statistics-based 

sensitivity and uncertainty (SU) analysis on CFD simulations. This paper aims at presenting some ideas 

on the procedure in safety analysis on hydrogen in nuclear containment. A hydrogen recombiner case is 

constructed and simulated with CFD method. DDTR at each instant is computed using a semi-empirical 

method. RBD-FAST based SU analysis is performed on the result. 

Key words: Hydrogen safety; Computational Fluid Dynamics; Deflagration-to-Detonation Transition 

Ratio; Random Balanced Design-Fourier Amplitude Sensitivity Test 

1. INTRODUCTION 

During a severe accident in nuclear power plant, hydrogen, mainly produced from zirconium-water 

reaction, can leak into the atmosphere of containment. The hazard of hydrogen explosion menaces the 

integrity of containment, as the case in Fukushima Daiichi nuclear disaster. Deflagration-to-Detonation 

Transition Ratio (DDTR) tells whether the possibility of detonation can be ruled out (DDTR < 1) or not 

(DDTR > 1)[1]. Thus the precise prediction of DDTR at each instant is an important task in the safety 

analysis of the hydrogen in a nuclear containment. 

The value of DDTR can be estimated given the distribution of thermodynamic parameters, including 

temperature, pressure and concentrations of the components[2], which can be simulated using whether 

lumped-parameter or CFD codes. Simulation cases requires a set of input data. For stochastic or 

epistemic reasons, however, the input data for the boundary conditions, initial conditions and physical 

models cannot always be determined with precision.[3] This lack of accuracy can significantly impair 

the precision of model output. Uncertainty analysis is to quantify the uncertainty of the output while 

sensitivity analysis is to determine the influence of the input uncertainty on the output. Therefore, 

uncertainty and sensitivity (SU) analysis is a key step to understand the model behavior and possibly to 

improve the accuracy. 

This paper is aimed at designing a 3-step procedure of hydrogen safety analysis in containment. First, 

CFD simulation is performed on hydrogen behavior using specialized modules such as catalyst hydrogen 

recombiner model. Second, the possibility of detonation and its destructiveness are evaluated with 

chemical-dynamical codes using the distribution of thermodynamic parameters provided by the CFD 

output. At last, input uncertainty is considered and SU analysis is performed to show the uncertainty of 

output and its sensitivity to the input parameters. 

In order to demonstrate the idea of the study, a hydrogen recombiner test case is constructed and 



simulated using CFD method. Then DDTR at each instant is predicted using a semi-theoretical semi-

empirical method. At last, an uncertainty of 5% is assumed to some key input parameters and a random 

balanced design Fourier amplitude sensitivity test (RBD-FAST) method is applied to make SU analysis 

on the test case. The results of the SU analysis are presented and discussed. 

2. DEFLAGRATION-TO-DETONATION TRANSITION RATIO 

DDTR at a given instant, t, is defined as, 

 
 

 7

D t
DDTR t

t
  (1) 

where D(t) - characteristic geometrical size of the flammable gaseous cloud, m; λ(t) - detonation cell 

width, m.  

For general geometries, D can be estimated as the cubic root of the total volume of the flammable 

gaseous cloud. For wet hydrogen-air mixtures, the term “flammable” requires the volume fractions of 

steam and hydrogen to meet the demand[4], 
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In order to determine the border of the flammable cloud, detailed distribution of the concentration of 

each component is required. This made it necessary to apply CFD method for the simulations. The 

volume of the cloud then can be calculated by summing up the volume of the mesh cells which meet the 

demand in Eq.(2). 

λ is the average width of the cell structures behind detonation wave at given conditions[5]. Due to the 

limitation of the knowledge on detonation phenomenon, the value of λ can only be estimated using 

empirical or semi-empirical correlations. An OCDE/NEA report[6] recommends 2 methods to compute 

λ, of which the one with wider adaptability is applied in this paper. It is supposed that λ is highly 

correlated to a characteristic reaction zone width, δ, and the ratio λ/δ is a function of 2 dimensionless 

parameters, i.e., a dimensionless effective chemical activation energy Ea/R/Tps, and a dimensionless 

temperature of the gas mixture, Tvn/T0, where Ea is the activation energy of the reaction, R is the gas 

constant, Tps is the post-shock temperature of the gas, Tvn is the von-Neumann temperature and T0 is the 

initial temperature of the gas[7]. With a large amount of experimental data, a correlation of λ/δ = 

f(Ea/R/Tps, Tvn/T0) is built using different analytical correlation and least squares fitting, 

       lg / ln ln / / kY aY b X cX d e fY Y g Y h X Y i X jY X l                 (3) 

where, X = Ea/R/Tps and Y = Tvn/T0. Little letters a ~ l are regression parameters, of which the values are 

given in [7]. 

In this paper, thermodynamic conditions of the flammable gaseous cloud, including temperature, 

pressure and concentrations of components, are at first preconditioned into δ, Ea/R/Tps and Tvn/T0, using 

an open-source chemical-dynamics code, Cantera[8]. Then the value of λ is computed with Eq.(3). 

3. CONSTRUCTION OF A HYDROGEN RECOMBINER CASE 

For the reason that this paper is mostly aimed at the demonstration of a study methodology, a simple 

computational test case is constructed. It is assumed that in a confined vessel of which the sketch is 

shown in Figure. 1, a SIEMENS FR-90/1-150 hydrogen recombiner is located on the central axis. As 

initial condition, the vessel is filled with hydrogen-air mixture. Hydrogen distributes in a stratification 

zone in the upper part of the vessel. The distribution of hydrogen in upright direction is shown in Figure. 

2. The initial temperature and pressure inside the vessel are respectively 20°C and 1atm. The temperature 

of the wall remains 20°C during the whole computation. A constant heat transfer coefficient (5W/m2/°C) 



is assumed to the heat exchange between the gas and the wall. For the sake of simplification, steam 

condensation is not considered in computation. 

The simulation is performed with an in-house CFD code, HYDRAGON, of which the validity has been 

proved by practical utilizations[9]~[12]. Hexahedral meshes with different refinements (10×10×24, 

20×20×48 and 40×40×96) are compared during grid sensitivity analysis and the medium mesh is 

selected for the geometry. Low Mach number model[13] is applied to ensure the accuracy in simulating 

the behavior of hydrogen. Standard k- model is used to consider the turbulence. Buoyancy is considered 

in both fluid governing equations and turbulence model. SIEMENS hydrogen recombiners are described 

with a “0D” model[14], which computes the consumption rate of hydrogen using Eq.(4). 

 
Figure. 1 Sketch of the vessel 

 
Figure. 2 Distribution of hydrogen at different elevations 
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where,  
2 2 2 ,minmin ,2 ,0.08 , 0.005H O HX X X X    

X - volume fraction, 1; p – pressure, Pa; η - recombiner output parameter. η allows to take into account 

the decrease of the efficiency of the recombiner for the weak concentrations of oxygen, 
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where A and B are parameters provided by SIEMENS. For the FR90/1-150 the values are respectively 
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0.48 × 10−3 kg/s/bar and 0.58×10−3 kg/s. 

Moreover, the reaction H2 + (1/2)O2  H2O is exothermic. The released heat is 122MJ/kgH2. 

With the simulation results, the domain of the flammable gaseous cloud can be determined by comparing 

the concentrations of components in each mesh cell and the criterion in Eq.(2). According to the CFD 

results, the temporal variations of average pressure, mass average temperature and average volume 

fractions of hydrogen and steam in the cloud are summarized in Figure. 3 and Figure. 4. 

 
Figure. 3 Average pressure and mass average temperature v.s. time in the flammable cloud 

 
Figure. 4 Average volume fraction of hydrogen and steam v.s. time in the flammable cloud 

 
Figure. 5 DDTR and estimated maximum explosion energy of the flammable cloud v.s. time 
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Using the data presented in Figure. 3 and Figure. 4, DDTR of the flammable cloud is computed. The 

temporal variation of DDTR is described in Figure. 5. It can be found that at the beginning, DDTR is as 

high as 4.5, meaning a great possibility of hydrogen detonation. With the application of catalyst 

recombiner, hydrogen is consumed by reaction with oxygen, leading to the decrease of DDTR. However, 

during the first 20 seconds, oscillation happens to DDTR. This is a result of the competition between 

the effect of the increase of temperature as well as pressure and the effect of the decrease of hydrogen 

concentration. The oscillation vanishes when pressure and temperature trends to be steady, as a result of 

the removal of heat through the wall. The possibility of hydrogen detonation can be ruled out when 

DDTR < 1. 

Along with DDTR, an estimated maximum explosion energy, Qmax, is also presented in Figure. 5. It is a 

simple summation of the energy that can be released by H2-O2 reaction in the cloud, assuming that the 

hydrogen in the cloud can be consumed thoroughly and simultaneously during an explosion. The ideal 

reaction may not happen practically but the parameter can provide a preliminary estimation for the 

destructiveness of hydrogen detonation. It can be found in Figure. 5 that the value of Qmax decreases 

continuously with the consumption of hydrogen. Meanwhile, it can be observed that, in the first 8s, the 

behavior of Qmax (almost stable) in Figure. 5 does not follow the behavior of the decreasing hydrogen 

volume fraction in Figure. 4. It is possibly a result of the recombiner-induced convection that enhanced 

the mixing of gas in the upper space, leading to some initially uninflammable cells satisfying the demand 

in Eq.(2). The assumption should be investigated in future study. 

4. RBD-FAST BASED SENSITIVITY & UNCERTAINTY ANALYSIS 

4.1. Introduction to RBD-FAST 

The methods for sensitivity and uncertainty analysis are based on either deterministic or statistical 

procedures[15]. Due to the complexity and nonlinearity of fluid system, it is unpractical to perform 

deterministic SU analysis methods on CFD simulations. On the other hand, however, statistics-based 

SU analysis methods require repeated computations for a large amount of samples. The number of 

samples varies from tens to thousands according to different methods applied. Considering the 

computation effort needed for a single run of CFD simulation for a complicated system, even the 

roughest statistical SU analysis method can sometimes demand unaffordable amount of computational 

time and resources. 

In order to cut down the computational cost, nonparametric statistical methods are applied in SU analysis 

in earlier studies[16][17]. Tolerance limits with a certain degree of confidence are treated as the quantity 

of uncertainty, while Spearman’s correlation coefficient (SCC) or Pearson’s correlation coefficient (PCC) 

between input parameter and output variable is used as the measurement of sensitivity. With such 

methods, merely hundreds of samples are required to produce an evaluation of uncertainty and 

sensitivity. However, mathematically, SCC or PCC is a parameter quantifying the monotonic correlation 

between two sets of data[18]. Therefore, theoretically, it is not able to measure the aptitude of output 

variation due to input error, thus the coefficient cannot fully reflect the dependency of the output on the 

input, i.e., the sensitivity. 

The increase of the computational power has made it feasible for large scale parallel computations. Thus 

it is possible to apply finer methods to make SU analysis for CFD simulations. Random balance design 

Fourier aptitude sensitivity test (RBD-FAST) is an SU analysis method developed from analysis of 

variance and Fourier transform[19]. This method computes the 1st-order sensitivity by deciding the 

contribution of the variance caused by a given input parameter to the whole variance of the output. The 

definition of sensitivity is, 
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where Y - output variable; X - input parameter; E(Y|X) - conditional expectation of Y at given X; var – 

variance; SY|X - sensitivity of Y on X. 

In order to introduce the procedure in performing RBD-FAST, at first a computer model Y = f(x1, x2, …, 

xN) is considered, where N is the number of independent parameters and the domain of independent 



parameters is the hypercube, 
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where xi
min and xi

max are the minimum and maximum possible values of xi. To produce a set of samples 

of xi, a search function is introduced to explore the space Ωn, 
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where M - total number of samples; ω - characteristic frequency for xi (which can be set to 1 in RBD-

FAST); Fi
-1 - inverse cumulative distribution function (ICDF)[20] for xi. With Eq.(6), M samples can be 

generated for each xi. Xi is defined as the sample sequence of xi,  

 1 2, ,...i i i iMX x x x  (7) 

Then we randomly reorder the M units in Xi and get, 

         
1 2, ,..., ,...,

r r r r r

i i i im iMX x x x x 
 

 (8) 

where m - sample order after reordering. (r) stands for reorder. Random reordering is performed N times 

for each xi. The model is then run on the reordered parameter values to get the model output, 

      1 2, ,... , 1,2,...
r r r

m m m NmY f x x x m M   (9) 

Finally, for a specific parameter of interest, xi, on the model output values according to the original 

sample order (i.e., order before applying the random reordering in Eq.(7)), the FAST analysis is applied 

by calculating the spectrum of the fast Fourier transform, 
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Then the partial variance in model output arising from the uncertainty of parameter xi, Vi, can be 

estimated with Eq.(11), where L is an order number which is usually set to 4~6. The total variance, V, 

can be estimated with Eq.(12) 
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The ratio Vi/V measures the contribution of parameter xi to the total variance of response variable Y. This 

ratio is also termed the first-order sensitivity, 

| /
iY x iS V V  (13) 



In earlier investigations on RBD-FAST, the error from the theoretical value of sensitivity increases as 

sensitivity decreases and the error decreases as sample number increases. It is shown that when the 

sample number is larger than 1000, the error can be less than 5% for sensitivities larger than 0.1.[19] Such 

a feature of RBD-FAST meets our demand as the primary task of sensitivity analysis in this paper is to 

screen out the input parameters of which the uncertainty has higher influence on the output. 

4.2. Selection of input and output parameters to be analyzed 

In the hydrogen recombiner case, 6 parameters listed in Table 1 are selected as input parameters with 

uncertainty. The distribution types of the uncertainties of all the 6 parameters are assumed Gaussian and 

the standard deviations are assumed to be 5% of their nominal values. The total sample number is 1000 

and the samples are generated in the way proposed by RBD-FAST. DDTR and Qmax are selected as the 

output variable to be analyzed. The computations are performed on the high performance computation 

(HPC) platform in Tsinghua University. The cluster has 740 nodes, each of which is composed with 

2 Intel Xeon X5670 CPU (6-core processor). It means theoretically the 1000 sample cases can be 

computed simultaneously without the consideration of queuing. And it takes a core about 4 hours to 

accomplish the computation of a sample case. 

Table 1. Input parameters with uncertainty and their nominal values 

Symbol Parameter name Nominal value 

x1 Wall temperature, Tw 20°C 

x2 Wall heat transfer coefficient, hw 5J/m2/°C 

x3 Initial temperature, T0 20°C 

x4 Initial hydrogen volume fraction coefficient, α* 1 

x5 Recombiner performance parameter, A 0.48 × 10−3 kg/s/bar 

x6 Recombiner performance parameter, B 0.58×10−3 kg/s 
*The initial hydrogen distribution stratified. When sampling the initial hydrogen volume fraction, the 

coefficient, α, is sampled and multiplied by the nominal fraction in each layer to get the actual fraction. 

4.3. Uncertainty analysis 

The upper and lower bounds of the variation of DDTR due to the uncertainty of input parameters are 

shown in Figure. 6. “Nominal value” is the DDTR output when all the parameters in Table 1 are set to 

their nominal values. “Mean value” is the arithmetic average of DDTR in all 1000 sample results. It can 

be found that the curve of the nominal value coincides with that of the mean value. The upper or lower 

bound is formed, respectively, with the maximum or minimum values of DDTR among 1000 sample 

results at each instant. Thus all the time-variation curves of DDTR are between the two bound curves. 

The distribution histograms of DDTR at 0s, 30s and 60s are presented in Figure. 8. It can be found that 

the assumed distributions of input parameters lead to skewed Gaussian distributions of DDTR output at 

each instant. Figure. 6 and Figure. 8 together come to a conclusion that the uncertainty of DDTR is high 

at the beginning of the computation. Then the uncertainty becomes lower and lower as DDTR decreases. 
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Figure. 6 Temporal variation of upper and lower bounds for DDTR 

 
Figure. 7 Temporal variation of upper and lower bounds for Qmax 

Figure. 7 presents the upper and lower bounds for Qmax while Figure. 9 shows its distribution histogram 

at 3 given instants. It can be found that, during the first 6 seconds, the maximum value of Qmax increases 

with time and the nominal curve as well as the mean curve is far from the center between the two bounds. 

Such phenomenon agrees with the fact that the distribution of Qmax is quite skewed at 0s in Figure. 9. 

Then, unlike the conclusions about DDTR, the uncertainty of Qmax almost remains constant during the 

rest of the simulation, although the value of Qmax decreases continuously with time. Meanwhile, the 

normality of the distribution of Qmax is better than that of DDTR at 30s and 60s.  

   
Figure. 8 Distribution of DDTR at given instants. The unity of the x-axis is 1. 
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Figure. 9 Distribution of Qmax at given instants. The unity of the x-axis is MJ. 

 
Figure. 10 Distribution of the time need for DDTR to fall below 1 

Another concerned issue in hydrogen analysis is the time needed, when safety measures are taken, for 

DDTR to fall below 1 where the possibility of detonation can be ruled out. In this case, the average 

value is 38.7s, the standard error is 5.2s and its distribution is described in Figure. 10. 

4.4. Sensitivity analysis 

The sensitivity of DDTR and Qmax on different input parameters are presented in Figure. 11. The 

correspondences between x1~x6 in the legend and the 6 parameters are listed in Table 1. It can be found 

in the two graphs that in this test case, only the uncertainty of the initial hydrogen distribution (x4) has 

significant influence on the variation of DDTR and Qmax. What’s more, the influence of this parameter 

decrease gradually with time. The sensitivities of the other 5 parameters are all less than 0.1. According 

to the introduction in 4.1, for RBD-FAST, when the sample number is not larger than 1000, the value of 

sensitivity is reliable only when it is larger than 0.1. One thing can be sure is, however, that the influence 

of the uncertainties of the other 5 parameters on these two output variables are negligible. The sensitivity 

analysis comes to a conclusion that, within the scope of this test case, the uncertainties of DDTR and 

Qmax are produced mainly due to the uncertainty of the initial hydrogen distribution. 

 
(a) DDTR 

 
(b) Qmax 

Figure. 11 Sensitivity of DDTR and Qmax on different input parameters 
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(a) DDTR 

 
(b) Qmax 

Figure. 12 Comparison of the sensitivity of DDTR and Qmax between SCC and RBD-FAST 

Spearman’s correlation coefficient (SCC) between the initial hydrogen volume fraction coefficient and 

the DDTR and Qmax output is also calculated for the 1000 samples. It is compared to the sensitivity 

defined in RBD-FAST, as presented in Figure. 12.The curves of sensitivity computed defined in the two 

methods show similar variation trend. But the sensitivity defined by RBD-FAST is generally lower than 

SCC. In order to measure the variation of the sensitivity, a sensitivity variation ratio is defined as the 

ratio between the actual sensitivity and the maximum sensitivity ever observed during computation. It 

can be found in Figure. 13 that the variation of the sensitivity by RBD-FAST is stronger than that of 

SCC except for DDTR at 0 second where SCC has a very low value (0.76). 

 
(a) DDTR 

 
(b) Qmax 

Figure. 13 Comparison of sensitivity variation ratio of DDTR and Qmax between SCC and RBD-FAST 

5. DISCUSSION 

The first thing to be discussed is the validity of the method to compute detonation cell width and then 

to compute DDTR. Whether the criterion is valid for a uniform or non-uniform distributed hydrogen 

cloud depends on the experimental data used to establish the correlation. If the correlation is built from 

mean physical features of the clouds, then the CFD output has to be averaged in space before computing 

detonation cell width for certain clouds. To the authors’ knowledge, mean physical properties are used 

to build Eq.(3) referring to [11]. Meanwhile, detonation probability depends not only on thermodynamic 

parameters but also very strongly on the geometry where the flammable cloud is found. Different 

expressions for characteristic size have been established for cloud in different simple geometrical 

structures, e.g. cuboid or cylindrical rooms. However, at present, precise computation of characteristic 
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size for cloud in arbitrary geometry is not yet available and a universal approximation as the cubic root 

of the total volume of the cloud is a compromise for complex geometries in CFD simulations. 

The second thing is on uncertainty and sensitivity analysis. It should be stressed that the conclusions 

drawn from a case are only valid within the scope of the case itself. In the test case in this paper, only 

the uncertainty of initial hydrogen distribution has significant influence on the 2 output variables. It is 

possible that the 2 output variables were sensitive to other input parameters that are not discussed here. 

Meanwhile, the uncertainty of the other 5 parameters may have more contributions to the uncertainty 

other output variables. What’s more, the dependency between output uncertainty and input uncertainty 

may be thoroughly changed for different conditions including the geometry condition, initial condition 

and boundary condition. For a given case, SU analysis is performed on concerned parameters. The 

conclusions of SU analysis are valid to a specific condition but they should be expanded very carefully. 

The third thing is the validity of SCC in measuring sensitivity. In this simple case, only one input 

parameter is screened out in sensitivity test and the monotonicity between the output variables and this 

input parameter seems quite straightforward. SCC, although not as fine and not as sensitive, has 

comparable reference value to the RBD-FAST result here. However, for more complicated cases where 

the reliance of output uncertainty on input uncertainty is not monotonous, whether SCC can reflect 

sensitivity is still an issue to be further discussed. 

6. CONCLUSSION 

In this paper, a 3-step study procedure is designed for hydrogen safety analysis in containment. The 3 

steps are namely CFD simulation, DDTR computation and SU analysis. The operation of the procedure 

is demonstrated on a simple test case. Its feasibility is ensured by growing computation power of 

nowadays. The procedure can be used in evaluating hydrogen detonation risk in containment, finding 

the key factors that can affect the risk and providing references to taking necessary safety measures.  
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