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 Motivate the need to investigate hydrogen
compatibility of high-hardenability steels

e Methods and Materials

 Compare fatigue crack growth rates of high-
hardenability steels with currently used
pressure vessel steels

 Assess the effect of strength on fracture
resistance in high-pressure hydrogen
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'Motivation: industry needs thicker-walled pressure
vessels for stationary high-pressure hydrogen storage
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« Cr-Mo quench and tempered
(Q&T) steels are the standard for
high-pressure stationary storage

— Hardenability limits thickness to
less than 35 mm

— Example: ASME SA-372 Grade J
* Ni-Cr-Mo Q&T steels display

higher hardenability than
Cr-Mo steels

— Substantially thicker walls

— Less property variation through
wall thickness

— Example: ASME SA-723

Question: How do fatigue and fracture properties of
Ni-Cr-Mo steels differ from Cr-Mo steels in hydrogen?
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" Fracture mechanics enables efficient.éesign
compared to stress-based methodologies
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Fatigue basis must be considered for stationary
pressure vessels that see frequent pressure cycles
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ASME BPVC Section VI, Division 3, Article RD-10
provides rules for characterization of pressure vessel
steels for storage of gaseous hydrogen

Fatigue crack growth

Characterized by da/dN = f(AK)

Typical fatigue crack growth methodology s e
described in ASTM E647

Fracture resistance
Characterized by K4

Threshold stress intensity factor for hydrogen-
assisted cracking using ASTM E1681

Fracture mechanics parameters must be
measured in relevant hydrogen environments
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Fracture mechanics measurements can be made
In high-pressure gaseous hydrogen

Fatigue crack growth Fracture resistance
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« Cracks are extended in fatigue under controlled C or constant load,
* Followed by monotonic fracture resistance measurements, using
elastic-plastic, rising load fracture method (ASTM E1820)
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Fatigue tests at low AK can be greatly
accelerated by using negative values of C
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High-hardenability pressure vessel steels:
Ni-Cr-Mo quench and tempered (Q&T) steels

Designation Fe Ni Cr Mo Vv Mn Si C S P
ST bal 193 082 026 nr 0.75 028 04 0.007 0.006
Grade L
SA-723 bal 1.5 080 0.20 0.20 090 0.35 0.35 0.015 0.015
Grade 1 225 200 040 max max max max max max
SN bal 354 172 045 0.10 0.30 0.05 0.27 0.0008 0.005
Grade 3

Desianation Tensile strength Yield Strength
9 (MPa) (MPa)
Grade 1 — Class 1 860 715 Does not
Grade L-LS 873 731 < meet SA-372
Grade 3 — Class 2 978 888 (low strength)

Grade L 1149 1053
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-Fatigue crack growth rates of Ni-Cr-Mo Q&T

steels are insensitive to strength for low AK
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 These steels represent a
wide range of strength and
composition for Ni-Cr-Mo

PV steels
Deviation from from the
basic trend represents K,,,.,
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-Fatigue crack growth rates for high-h;'denability
steels are consistent at high load ratio (R)
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- Crack growth rates are accelerated at high R (expected)
- High-strength material shows transition to stage lll at low
AK for high load ratio (and higher AK for lower R)
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Fatigue crack growth rates of Ni-Cr-Mo and
Cr-Mo Q&T steels are similar

* Cr-Mo and Ni-Cr-Mo steels
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v GrlL-LS >100 MPa H2 show similar fatigue crack
M growth rates in gaseous
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hydrogen
— Cr-Mo: SA-372 Grade J
— Ni-Cr-Mo: SA-723 Grades
(SA-372 Grade L also)

- Crack growth rates are not
sensitive to frequency
between 0.1 and 1 Hz
(at least for AK > ~9 MPa m'72)
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Upper bound fatigue crack growth curves can be
estimated for R =0.1, 0.5, and 0.7
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Fracture resistance in gaseous hydroZen IS
sensitive to tensile strength for Q&T steels

1 * Ni-Cr-Mo steels show

=1 similar fracture resistance

(K,y) as other ferritic
] steels, including Cr-Mo
] steels

1 * Fracture resistance of Q&T
1 steels is typically greater

| than 40-50 MPa m'2 for

1 tensile strength < 950 MPa

* Q&T steels with strength
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> 950 MPa feature K less
1200 than 20 MPa m'/2
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‘Summary

» Fatigue crack rates of pressure vessel steels in high-
pressure gaseous hydrogen are relatively insensitive
to composition and strength

— A range of Cr-Mo and Ni-Cr-Mo quench and tempered
pressure vessels show similar fatigue crack growth rates

— High-strength steels show transition to stage lll crack
growth rates at K., as low as 12 MPa m'/2

» Fatigue tests can be accelerated by varying the
normalized K-gradient (C) in the range +/- 0.4 mm'; L
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* Fracture resistance is very sensitive to material %O 0L,
strength :

— Rising load fracture measurements on a range of steel

strengths show markedly lower fracture resistance for
steels with tensile strength >900-950 MPa
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