

Fatigue and fracture of high-hardenability steels for thick-walled hydrogen pressure vessels

- C. San Marchi and J.A. Ronevich Sandia National Laboratories, Livermore CA, USA
- P. Bortot

 Tenaris Dalmine, Italy
- J. Felbaum FIBA Technologies, USA
- Y. Wada

 Japan Steel Works, Japan

SAND2017-9817C

International Conference on Hydrogen Safety September 13, 2017, Hamburg, Germany

Outline

- Motivate the need to investigate hydrogen compatibility of high-hardenability steels
- Methods and Materials
- Compare fatigue crack growth rates of highhardenability steels with currently used pressure vessel steels
- Assess the effect of strength on fracture resistance in high-pressure hydrogen

Motivation: industry needs thicker-walled pressure vessels for stationary high-pressure hydrogen storage

- Cr-Mo quench and tempered (Q&T) steels are the standard for high-pressure stationary storage
 - Hardenability limits thickness to less than 35 mm
 - Example: ASME SA-372 Grade J
- Ni-Cr-Mo Q&T steels display higher hardenability than Cr-Mo steels
 - Substantially thicker walls
 - Less property variation through wall thickness
 - Example: ASME SA-723

Question: How do fatigue and fracture properties of Ni-Cr-Mo steels differ from Cr-Mo steels in hydrogen?

Fracture mechanics enables efficient design compared to stress-based methodologies

Fatigue basis must be considered for stationary pressure vessels that see frequent pressure cycles

ASME BPVC Section VIII, Division 3, Article KD-10 provides rules for characterization of pressure vessel steels for storage of gaseous hydrogen

Fatigue crack growth

Characterized by $da/dN = f(\Delta K)$

Typical fatigue crack growth methodology described in ASTM E647

Fracture resistance

Characterized by K_{IH}

Threshold stress intensity factor for hydrogenassisted cracking using ASTM E1681

Fracture mechanics parameters must be measured in relevant hydrogen environments

Fracture mechanics measurements can be made in high-pressure gaseous hydrogen

- Cracks are extended in fatigue under controlled C or constant load,
- Followed by monotonic fracture resistance measurements, using elastic-plastic, rising load fracture method (ASTM E1820)

Fatigue tests at low ΔK can be greatly accelerated by using negative values of C

- Time to collect data for a given ∆K range scales approximately with C
- For a constant load test
 C ~ 0.1 mm⁻¹
- For segments shown
 - Constant load is estimated to be 14 ~hr
 - $C = -0.16 \text{ mm}^{-1} \text{ is } \sim 8 \text{ hr}$
 - $C = -0.39 \text{ mm-1 is } \sim 5.5 \text{ hr}$
- For ∆K range of 5–6 MPa m^{1/2}
 - $C = +0.16 \text{ mm}^{-1} \text{ is } \sim 47 \text{ hr}$
 - $C = -0.39 \text{ mm-1 is } \sim 27 \text{ hr}$

High-hardenability pressure vessel steels: Ni-Cr-Mo quench and tempered (Q&T) steels

Designation	Fe	Ni	Cr	Мо	V	Mn	Si	C	S	Р
SA-372 Grade L	bal	1.93	0.82	0.26	nr	0.75	0.28	0.4	0.007	0.006
SA-723 Grade 1	bal	1.5 2.25	0.80 2.00	0.20 0.40	0.20 max	0.90 max	0.35 max	0.35 max	0.015 max	0.015 max
SA-723 Grade 3	bal	3.54	1.72	0.45	0.10	0.30	0.05	0.27	0.0008	0.005

Designation	Tensile strength (MPa)	Yield Strength (MPa)			
Grade 1 – Class 1	860	715	Does not		
Grade L-LS	873	731 ←	— meet SA-372		
Grade 3 – Class 2	978	888	(low strength)		
Grade L	1149	1053			

Fatigue crack growth rates of Ni-Cr-Mo Q&T steels are insensitive to strength for low ΔK

- These steels represent a wide range of strength and composition for Ni-Cr-Mo PV steels
- Deviation from from the basic trend represents K_{max} approaching the fracture resistance (stage III of fatigue crack growth)
 - Apparent only for the highstrength steels

 $K_{max} \rightarrow K_{JH}$

Fatigue crack growth rates for high-hardenability steels are consistent at high load ratio (R)

- Crack growth rates are accelerated at high R (expected)
- High-strength material shows transition to stage III at low ΔK for high load ratio (and higher ΔK for lower R)

Fatigue crack growth rates of Ni-Cr-Mo and Cr-Mo Q&T steels are similar

- Cr-Mo and Ni-Cr-Mo steels show similar fatigue crack growth rates in gaseous hydrogen
 - Cr-Mo: SA-372 Grade J
 - Ni-Cr-Mo: SA-723 Grades (SA-372 Grade L also)
- Crack growth rates are not sensitive to frequency between 0.1 and 1 Hz (at least for ∆K > ~9 MPa m^{1/2})
- Single master curve for fatigue crack growth of both Cr-Mo and Ni-Cr-Mo steels appears reasonable

Upper bound fatigue crack growth curves can be estimated for R = 0.1, 0.5, and 0.7

- Fatigue crack growth curves are approximately parallel for different load ratios
- Near ∆K = 10 MPa m^{1/2}, the crack growth rates transition to a lower power law slope
- In general, these curves intersect air curves near 10⁻⁹ m/cycle and have similar slope as at high ∆K

Fracture resistance in gaseous hydrogen is sensitive to tensile strength for Q&T steels

- Ni-Cr-Mo steels show similar fracture resistance (K_{JH}) as other ferritic steels, including Cr-Mo steels
- Fracture resistance of Q&T steels is typically greater than 40-50 MPa m^{1/2} for tensile strength < 950 MPa
- Q&T steels with strength > 950 MPa feature K_{JH} less than 20 MPa m^{1/2}

Summary

- Fatigue crack rates of pressure vessel steels in highpressure gaseous hydrogen are relatively insensitive to composition and strength
 - A range of Cr-Mo and Ni-Cr-Mo quench and tempered pressure vessels show similar fatigue crack growth rates
 - High-strength steels show transition to stage III crack growth rates at K_{max} as low as 12 MPa $m^{1/2}$
- Fatigue tests can be accelerated by varying the normalized K-gradient (C) in the range +/- 0.4 mm⁻¹
- Fracture resistance is very sensitive to material strength
 - Rising load fracture measurements on a range of steel strengths show markedly lower fracture resistance for steels with tensile strength >900-950 MPa