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• Motivate the need to investigate hydrogen 
compatibility of high-hardenability steels

• Methods and Materials
• Compare fatigue crack growth rates of high-

hardenability steels with currently used 
pressure vessel steels

• Assess the effect of strength on fracture 
resistance in high-pressure hydrogen



Motivation: industry needs thicker-walled pressure 
vessels for stationary high-pressure hydrogen storage
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Question: How do fatigue and fracture properties of 
Ni-Cr-Mo steels differ from Cr-Mo steels in hydrogen?

• Cr-Mo quench and tempered 
(Q&T) steels are the standard for 
high-pressure stationary storage 

– Hardenability limits thickness to 
less than 35 mm

– Example: ASME SA-372 Grade J
• Ni-Cr-Mo Q&T steels display 

higher hardenability than 
Cr-Mo steels

– Substantially thicker walls
– Less property variation through 

wall thickness
– Example: ASME SA-723



Fracture mechanics enables efficient design 
compared to stress-based methodologies
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ASME BPVC Section VIII, Division 3, Article KD-10 
provides rules for characterization of pressure vessel 
steels for storage of gaseous hydrogen 
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Fracture mechanics parameters must be 
measured in relevant hydrogen environments

Fracture resistance
Characterized by KIH

Threshold stress intensity factor for hydrogen-
assisted cracking using ASTM E1681

Fatigue crack growth
Characterized by da/dN = f(∆K)

Typical fatigue crack growth methodology 
described in ASTM E647
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Fracture mechanics measurements can be made 
in high-pressure gaseous hydrogen

JIH

KJH = (JIHE’)1/2

Fracture resistanceFatigue crack growth

• Cracks are extended in fatigue under controlled C or constant load, 
• Followed by monotonic fracture resistance measurements, using 

elastic-plastic, rising load fracture method (ASTM E1820)
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Fatigue tests at low ∆K can be greatly 
accelerated by using negative values of C

• Time to collect data for a 
given ∆K range scales 
approximately with C

• For a constant load test 
C ~ 0.1 mm-1

• For segments shown
– Constant load is estimated 

to be 14 ~hr
– C = -0.16 mm-1 is ~8 hr
– C = -0.39 mm-1 is ~5.5 hr

• For ∆K range of 5–6 MPa m1/2

– C = +0.16 mm-1 is ~47 hr
– C = -0.39 mm-1 is ~27 hr
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High-hardenability pressure vessel steels: 
Ni-Cr-Mo quench and tempered (Q&T) steels

Does not 
meet SA-372 
(low strength)

Designation Fe Ni Cr Mo V Mn Si C S P
SA-372
Grade L bal 1.93 0.82 0.26 nr 0.75 0.28 0.4 0.007 0.006

SA-723
Grade 1 bal 1.5

2.25
0.80
2.00

0.20
0.40

0.20 
max

0.90
max

0.35
max

0.35 
max

0.015
max

0.015
max

SA-723 
Grade 3 bal 3.54 1.72 0.45 0.10 0.30 0.05 0.27 0.0008 0.005

Designation Tensile strength 
(MPa)

Yield Strength 
(MPa) 

Grade 1 – Class 1 860 715
Grade L-LS 873 731

Grade 3 – Class 2 978 888
Grade L 1149 1053



Fatigue crack growth rates of Ni-Cr-Mo Q&T 
steels are insensitive to strength for low ∆K
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• These steels represent a 
wide range of strength and 
composition for Ni-Cr-Mo 
PV steels

• Deviation from from the 
basic trend represents Kmax
approaching the fracture 
resistance (stage III of 
fatigue crack growth)

– Apparent only for the high-
strength steels
Kmax ➡ KJH
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Fatigue crack growth rates for high-hardenability 
steels are consistent at high load ratio (R)

• Crack growth rates are accelerated at high R (expected)
• High-strength material shows transition to stage III at low 

∆K for high load ratio (and higher ∆K for lower R) 



Fatigue crack growth rates of Ni-Cr-Mo and 
Cr-Mo Q&T steels are similar
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• Cr-Mo and Ni-Cr-Mo steels 
show similar fatigue crack 
growth rates in gaseous 
hydrogen

– Cr-Mo: SA-372 Grade J
– Ni-Cr-Mo: SA-723 Grades 

(SA-372 Grade L also)
• Crack growth rates are not 

sensitive to frequency 
between 0.1 and 1 Hz 
(at least for ∆K > ~9 MPa m1/2)

• Single master curve for 
fatigue crack growth of both 
Cr-Mo and Ni-Cr-Mo steels  
appears reasonable



Upper bound fatigue crack growth curves can be 
estimated for R = 0.1, 0.5, and 0.7
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• Fatigue crack growth 
curves are approximately 
parallel for different load 
ratios

• Near ∆K = 10 MPa m1/2, the 
crack growth rates 
transition to a lower power 
law slope

• In general, these curves 
intersect air curves near 10-
9 m/cycle and have similar 
slope as at high ∆K



Fracture resistance in gaseous hydrogen is 
sensitive to tensile strength for Q&T steels

• Ni-Cr-Mo steels show 
similar fracture resistance 
(KJH) as other ferritic 
steels, including Cr-Mo 
steels

• Fracture resistance of Q&T 
steels is typically greater 
than 40-50 MPa m1/2 for 
tensile strength < 950 MPa

• Q&T steels with strength 
> 950 MPa feature KJH less 
than 20 MPa m1/2



Summary
• Fatigue crack rates of pressure vessel steels in high-

pressure gaseous hydrogen are relatively insensitive 
to composition and strength
– A range of Cr-Mo and Ni-Cr-Mo quench and tempered 

pressure vessels show similar fatigue crack growth rates
– High-strength steels show transition to stage III crack 

growth rates at Kmax as low as 12 MPa m1/2

• Fatigue tests can be accelerated by varying the 
normalized K-gradient (C) in the range +/- 0.4 mm-1

• Fracture resistance is very sensitive to material 
strength
– Rising load fracture measurements on a range of steel 

strengths show markedly lower fracture resistance for 
steels with tensile strength >900-950 MPa
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