

Vented explosion of H₂/air mixtures: influence of vent cover

ICHS • Hamburg • 2017/09

E.Vyazmina/S.Jallais/M.Kuznetsov

Vented explosions

- Explosion vents are commonly used to protect both internal equipment and the enclosure itself:

 - pressure leaves the closed domain => the internal overpressure < adiabatic limit inflammable mixture partly leave the enclosure => to reduce the explosion mass
- Vented explosions are studied experimentally and numerically and analytically
- In complicated cases it is very difficult to find a proper analytical model:
 - presence of multiple vents
 - obstacles
 - stratification
 - vent covers

Objective: understand the influence of stratified clouds and vent cover inertia on the internal overpressure via experimental data and numerical simulations for vented explosion

Contents

- 1 Experimental facility and numerical set-up
- 2 Results for stratification and vent cover
- 3 Conclusion

Experimental facility and numerical set-up

Experimental chamber

Experimental set-up:

- combustion cubic chamber of 1m³
- square vents of 0.01m² (10 x 10 cm) and 0.25 m² (50 x 50 cm)
- BackWall ignition for vent cover and BackTop ignition for stratified mixtures
- 9 high speed pressure sensors (inside and outside)
- overpressure signals are post processed with low pass filter of 400 Hz

Numerical simulations

Simulations:

- FLACS v10.5 is used
- computational domain is chosen to be approximately the same size as in the experimental facility (8.3 m x 5.55 m x 3.4 m)
- the cell size is 2.5 cm (compared with grid of 5 cm)
- no initial turbulence
- measured concentration profiles are used
- Vyazmina et al.¹ demonstrated that CFD is hardly applicable for small vent areas =>

of for benchmark only vent of 0.25 m² is used

¹ Vyazmina, E. and Jallais, S., Validation and recommendations for CFD and engineering modeling of hydrogen vented explosions: effects of concentration, stratification, obstruction and vent area, *International Journal of Hydrogen Energy*, 2016.

Results for stratification and vent cover

Stratification

Stratification	max %H ₂	Experiment (mbarg)	Simulations (mbarg)
L-Layer	15%	21	26
	20%	94	160
	25%	212	390
S-Layer	15%	5	6
	20%	33-34	50
	25%	77	127

Simulations vs experiments:

- Simulation results are always conservative

 ofor low reactivity (L-layers 15% and S-layers 15%) simulations are in better agreement with exp giving overestimation by ~20%

 osimulations overestimate the overpressure by ~50% for 20% H2/air mixture

 - overestimation by a factor close to 2 for 25% H_a/air mixture
- For higher mixture reactivity a small error in the concentration strongly affects the obtained overpressure
- Simulations conservative => can be regarded as acceptable for gradient mixtures

Equivalent concentration: experiments

Uniform vs non-uniform:

- For the same amount of H₂ (average 10%) :
 - the maximum pressure for non-uniform (17-4% H_2) and (15-4% H_2) is **6 (!) times higher** than for uniform 10% H_2 mixture
 - the flame velocity is several times faster
- For the same amount of H₂ (average 7%) :
 - \circ the mixture 12-2%H₂ burns **2 faster** than the 10-5%H₂
 - maximum overpressure for 12-2% H_2 is > 10 times (!) higher than for uniform 7 % H_2
- Max concentration at the top governs the combustion behavior (not the average concentration)

Equivalent concentration: modeling

Real H ₂ %	Average H ₂ %	Equivalent H ₂ %
S-Layer 15%	4.3	12
S-Layer 20%	6.15	16
L-Layer 15%	7.6	15
L-Layer 20%	11.2	19

Uniform vs non-uniform:

- gradient layers give higher overpressure than the average homogeneous mixture
- the equivalent concentration is more than twice the average concentration

Effect of vent cover: Exp vs Model

H ₂ %	Vent cover (mm)	Exp. (mbarg)	Model (mbarg)
10.3	no	9	8
10	5	11	11
12.2	no	33	34
12	5	38	42

- the vent cover enhances the max overpressure inside the enclosure
- the thicker the vent cover is, the higher max overpressure is inside the vessel
- huge negative pressure impulse (physical ??)

Conclusion

- General results from experiments
 - Vented deflag. of a stratified H₂/air mixture leads to much higher max overpressure compared to the uniform H₂/air average concentration
 - The combustion is governed by the max. H_2 /air concentration (not by the average)
 - A vent cover leads to greater combustion pressure
 - Enormous negative pressure phase
- For stratified mixtures, FLACS simulations are always conservative
 - could be safely used in industrial situations
- For vent covers, FLACS gives reasonable agreement

