Ignition of hydrogen-air mixtures under volumetric expansion

R. Mével^{a,b}, **J. Melguizo-Gavilanes**^c and D. Davidenko^d

7th International Conference on Hydrogen Safety - Hamburg, GER

^a Center for Combustion Energy

^b Department of Automotive Engineering, Tsinghua University

^c California Institute of Technology (GALCIT)

^d The French Aeropace Lab - ONERA

Monday September 11, 2017

outlines

- Introduction
- Methodology and calculation procedure
- Results and discussion
- Conclusion

Formation of expansion waves

SW-obstacle

SW diffraction

Expansions can be formed in complex pipelines Important for shock ignition and industrial safety

Simulations by Prof. H. Hornung

Re-initiation behind a decaying shock wave (1)

Detonation direct initiation

2-D images

Bach et al., 1969

1-D simulations

Ng and Lee, 2003

SW velocity decreases much below D_{CJ} before re-initiation occurs

Re-initiation behind a decaying shock wave (2)

Detonation diffraction

2-D simulations

Velocity along the axis

SW velocity decreases much below D_{CJ} before re-initiation occurs

Results from Arienti and Shepherd, 2005

Reaction in expanding flows (1)

Lagrangian particles

Particle path

Temperature profile

As the SW decays, ignition delay-time increases and the reaction is eventually quenched

Results from Eckett et al., 2000

Reaction in expanding flows (2)

Ignition dynamics

Particle path

Energy equation analysis

Chemical energy release vs unsteadiness

Results from Arienti and Shepherd, 2005

Previous work on reacting expanding flows

Lundstrom and Oppenheim, Eckett et al., Arienti and Shepherd, Radulescu and Maxwell

1-step chemical models were used

Purpose of the study

Investigate the effect of volumetric expansion on the chemical kinetics of hydrogen-air mixtures

Approach

- Chemistry: detailed reaction model
- Flow: simple reactor model to describe expansion
- Scope : perform detailed kinetics analyses

outlines

- Introduction
- Methodology and calculation procedure
- Results and discussion
- Conclusion

Problem definition

Specific volume behind a decaying SW

Gas expands behind SW as time progresses

Chemical reactions do not take place at constant pressure or volume... cooling needs to be considered

Mathematical formulation (1)

Three forms for the rate of SW velocity decrease

- Linear : $U_S(t) = D_{CJ} \alpha t$
- Exponential : $U_S(t) = D_{CJ} \exp(-\beta t)$
- **Power law** : $U_S(t^*) = D_{CJ}(t^*)^{-\delta}$

α , β , and δ are adjusted so that $\Delta T/\tau$ through isentropic expansion is the same

- Linear : $\alpha(\Delta T) = D_{CJ} U_S(\Delta T)$
- Exponential : $\beta(\Delta T) = \ln(D_{CJ}/U_S(\Delta T))$
- Power law : $\delta(\Delta T) = \frac{\ln(D_{CJ}/U_S(\Delta T))}{\ln(2)}$

Mathematical formulation (2)

Final time of simulation

- Linear : $t_{f,Lin} = \frac{D_{CJ} U_{S}^{crit}}{\alpha(\Delta T)}$
- Exponential : $t_{f,Exp} = \frac{\ln(D_{CJ}/U_S^{crit})}{\beta(\Delta T)}$
- Power law : $t_{f,Pw}^* = \left(\frac{D_{CJ}}{U_S^{crit}}\right)^{1/\delta(\Delta T)}$

When SW becomes an acoustic wave ($M\sim 1$)

Calculation procedure

Numerical routine including the following steps

- Calculate D_{CJ}
- Calculate P_{vN} and T_{vN} for U_S = D_{CJ}
- Calculate τ_{Th} at P_{vN} and T_{vN} using a CP reactor
- Calculate $P_S(\Delta T)$ using the isentropic relationship for a given ΔT
- Calculate the corresponding U_S(△T)
- Calculate the shock decay rates coefficients : α , β and δ
- Calculate t_f (or t_f^*) for all decay rates
- Construct time vector in the range [0, t_f]
- Calculate shock velocity, U_S, corresponding to each element of the time vector
- Calculate $P_S(t)$ corresponding to each value of $U_S(t)$
- Calculate specific volume, v, starting from P_{vN} and T_{vN}, and considering an isentropic expansion
- Calculate τ_{Th} with the volume vs. time option (VTIM)

outlines

- Introduction
- Methodology and calculation procedure
- Results and discussion
- Conclusion

Reaction model validation (1)

Shock tube data

Good agreement

Reaction model validation (2)

Jet-stirred reactor data

Good agreement

Reaction model validation (3)

Flow reactor data

Reasonable agreement

Effect of expansion on the ignition dynamics

Cooling rate 0-250 K/ τ

Temperature profiles

Thermicity profiles

As cooling rate is increased τ increases and σ_{max} decreases

Effect of expansion on τ

P_1 = 10-1000 kPa and Cooling rate 0-250 K/ τ

Highest sensitivity to quenching for $P_1 = 500-800 \text{ kPa}$ Lowest sensitivity to quenching for $P_1 < 100$ kPa

Variation of CP τ along isentropes

Effect of initial pressure

At LP, 2nd explosion limit is located at lower T At HP, delay-time decreases as P increases

Species profiles

Power law decay rate

At 225 K/ τ , runaway just before final time At 230 K/ τ , no significant consumption of reactants

Energy release

Chemical energy vs Cooling (expansion)

At 225 K/ τ , weak energy release at longer time At 230 K/ τ , no significant energy release

Energy release per reaction

Focus on chemical energy release

Super-critical

At \leq 225 K/ τ :

Induction: $H+O_2(+M) = HO_2(+M)$

Exothermic : $OH+H_2 = H_2O+H$ and $OH+H(+M) = H_2O(+M)$

At > 225 K/ τ :

No switch to branching chemistry

Rate of production

Analysis for OH radical

At < 225 K/ τ :

Double inversion between linear chain and chain branching

At > 225 K/ τ :

Single inversion between linear chain and chain branching

Sensitivity coefficient on OH

Evolution as a function of cooling rate

Increasing sensitivity and competition between linear chain and chain branching

outlines

- Introduction
- Methodology and calculation procedure
- Results and discussion
- Conclusion

Study of chemical kinetics of hydrogen-air mixtures under volumetric expansion

- Power law decay is the least efficient at quenching the reaction
- Intermediate pressure (P₁ = 500-800 kPa) are the most sensitive to quenching
- Low pressure (P₁ < 100 kPa) are the least sensitive to quenching
- Complex response to expansion is due to the extended second explosion limit

Acknowledgments

Thank you for your attention **Questions?**

