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Introduction Importance of unsteadiness

Formation of expansion waves

SW-obstacle SW diffraction

Expansions can be formed in complex pipelines
Important for shock ignition and industrial safety

Simulations by Prof. H. Hornung
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Introduction Importance of unsteadiness

Re-initiation behind a decaying shock wave (1)

Detonation direct initiation

2-D images 1-D simulations
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Bach et al., 1969 Ng and Lee, 2003

SW velocity decreases much below D¢, before
re-initiation occurs
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Introduction Importance of unsteadiness

Re-initiation behind a decaying shock wave (2

Detonation diffraction

2-D simulations Velocity along the axis
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SW velocity decreases much below D, before
re-initiation occurs

Results from Arienti and Shepherd, 2005
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Introduction Importance of unsteadiness

Reaction in expanding flows (1)

Lagrangian particles

Particle path Temperature profile

As the SW decays, ignition delay-time increases
and the reaction is eventually quenched

Results from Eckett et al., 2000
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Introduction Importance of unsteadiness

Reaction in expanding flows (2

Ignition dynamics

Particle path Energy equation analysis
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Chemical energy release vs unsteadiness
Results from Arienti and Shepherd, 2005
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Introduction Importance of unsteadiness

Previous work on reacting expanding flows

Lundstrom and Oppenheim, Eckett et al., Arienti
and Shepherd, Radulescu and Maxwell

1-step chemical models were used
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Introduction Goals of the study

Purpose of the study

Investigate the effect of volumetric expansion on
the chemical kinetics of hydrogen-air mixtures

Approach

o Chemistry : detailed reaction model
e Flow : simple reactor model to describe expansion
e Scope : perform detailed kinetics analyses
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Methodology and calculation procedure

outlines

e Methodology and calculation procedure
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Problem definition

Specific volume behind a decaying SW

Pyn,T\N P, T, Py,Ty P,, T, Ps,f, TS,f Py, T,
VvN Vs Vsf
U, (t=0)=Dcy U, (t>0) < D¢y Us (t=1p) = U™
t=0 t>0 t=ty

Gas expands behind SW as time progresses
Chemical reactions do not take place at constant pressure or volume...
cooling needs to be considered
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Mathematical formulation (1)

Three forms for the rate of SW velocity decrease
@ Linear : Ug(t) = Doy — at
@ Exponential : Us(t) = Dgyexp(—pBt)

@ Power law : Ug(t*) = DCJ(t*)_5

o, B, and o are adjusted so that AT/t through
isentropic expansion is the same

@ Linear: Ot(AT) =D¢cy— Us(AT)
@ Exponential : B(AT)=In(D¢gy/Us(AT))

@ Power law : §(AT) = %S)AT))
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Mathematical formulation ¢

Final time of simulation

. . DCqucm
@ Linear: t;;;, = oc(TT?

crit
@ Exponential : t; g, = %

>1/5(AT)

@ Power law : t,{PW = (f;g%

When SW becomes an acoustic wave (M ~ 1)
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Calculation procedure

Numerical routine including the following steps

@ Calculate D¢y

@ Calculate P,y and T,y for Ug = D¢y

@ Calculate 77, at Pyy and Tyn using a CP reactor

@ Calculate Ps(AT) using the isentropic relationship for a given AT
@ Calculate the corresponding Ug(AT)

@ Calculate the shock decay rates coefficients : o, f and ¢

@ Calculate f; (or t;) for all decay rates

@ Construct time vector in the range [0, ]

@ Calculate shock velocity, Ug, corresponding to each element of
the time vector

@ Calculate Pg(t) corresponding to each value of Ug(t)

@ Calculate specific volume, v, starting from P,y and Ty, and
considering an isentropic expansion
@ Calculate t7, with the volume vs. time option (VTIM)
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Results and discussion

outlines

Q Results and discussion
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Results and discussion Reaction model

Reaction model validation

Shock tube data
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Results and discussion Reaction model

Reaction model validation (2)

Jet-stirred reactor data
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Good agreement
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Results and discussion Reaction model

Reaction model validation (3

Flow reactor data
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Reasonable agreement
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Results and discussion Ignition delay-time under volumetric expansion

Effect of expansion on the ignition dynamics

Cooling rate 0-250 K/t

Temperature profiles Thermicity profiles
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As cooling rate is increased
T increases and o5« decreases
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Results and discussion Ignition delay-time under volumetric expansion

Effect of expansionon t

P, =10-1000 kPa and Cooling rate 0-250 K/t

Linear decay Exponential decay Power law decay
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Highest sensitivity to quenching for P; = 500-800 kPa
Lowest sensitivity to quenching for P; < 100 kPa
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Results and discussion

Variation of CP 7 along isentropes

Ignition delay-time under volumetric expansion

Effect of initial pressure

Low pressure range

(Exponential decay)

High pressure range

(Linear decay)
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100 K/T'rh
At LP, 2" explosion limit is located at lower T
Mével et al. (7th ICHS)

At HP, delay-time decreases as P increases

Ignition of Ho-Air under volumetric expansion
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Results and discussion Thermo-chemistry dynamics at near-critical conditions

Species profiles

Power law decay rate

Sub-critical Near-critical Super-critical

o)\ 10"

10° 10°
Time (y:8) Time (1s)

200 K/t 225 K/t

At 225 K/7, runaway just before final time
At 230 K/7, no significant consumption of reactants
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Results and discussion Thermo-chemistry dynamics at near-critical conditions

Energy release

Chemical energy vs Cooling (expansion)

Sub-critical Near-critical Super-critical
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At 225 K/z, weak energy release at longer time
At 230 K/7, no significant energy release
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Results and discussion Thermo-chemistry dynamics at near-critical conditions

Energy release per reaction

Focus on chemical energy release

Sub-critical Near-critical Super-critical

ise rate (MJ/cm?.s)

Energy relea
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At < 225K/t :
Induction : H+O5(+M) = HO»(+M)
Exothermic : OH+H, = H,O+H and OH+H(+M) = H,O(+M)

At > 225K/t :
No switch to branching chemistry

Mével et al. (7th ICHS) Ignition of Ho-Air under volumetric expansion 24/29



Results and discussion Thermo-chemistry dynamics at near-critical conditions

Rate of production

Analysis for OH radical

Sub-critical Near-critical Super-critical

Rate of production (mol/cm?.s)
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200 K/t 225 K/t 230 K/t

At <225K/7:

Double inversion between linear chain and chain
branching

At > 225 K/7 :
Single inversion between linear chain and chain branching
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Results and discussion Thermo-chemistry dynamics at near-critical conditions

Sensitivity coefficient on OH

Evolution as a function of cooling rate
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Increasing sensitivity and competition between
linear chain and chain branching
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Conclusion

Study of chemical kinetics of hydrogen-air
mixtures under volumetric expansion

@ Power law decay is the least efficient at quenching the reaction

@ Intermediate pressure (P; = 500-800 kPa) are the most sensitive to
quenching

@ Low pressure (P < 100 kPa) are the least sensitive to quenching

@ Complex response to expansion is due to the extended second
explosion limit
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Conclusion

Thank you for your attention
Questions ?
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