Hydrogen at Test Site at DLR Institute of Propulsion

G. Krühsel, DLR-RA-PTE, Lampoldshausen

Hydrogen at Test Site at DLR Institute of Propulsion Background

- Hydrogen is the most promising fuel propellant of chemical space propulsion motors and therefore space launch systems
- **Since 1990** the operational experience of liquid hydrogen fueled rocket stages is continuelly extended in Western Europe and in Lampoldshausen
- The dimensioning of test facilities, hydrogen safety systems and safe operations is still today a challenge
 - Space limitations for testing large rocket subcomponents
 - New technologies for measurement command and control of test processes
 - Testing is almost a step towards the limits of system

Hydrogen at Test Site at DLR Institute of Propulsion Test Site Center LH2 Storages for Rocket Engine Testing

Hydrogen at Test Site at DLR Institute of Propulsion Actual Project P5.2 (A6 Upper Stage Test Facility)

- In Lampoldshausen a new test facility P5.2 was designed to test A6 ULPM upper stage
- chute will recover residual LH2/LOX in case of stage break down
- P5.2 concept based on max use of test site existing infrastructure → Connect to fluid net
- → Hot run firing a cryo stage at ambient conditions in 2019

mfahrtantriebe - Folie 4 >Explore Science 2

Hydrogen at Test Site at DLR Institute of Propulsion Actual Project P5.2 (A6 Upper Stage Test Facility)

Hydrogen at Test Site at DLR Institute of Propulsion A6 Upper Stage Test Facility Hydrogen Studies

- A safety study in the course of concept engineering contained a study of blast expansion either at atmosphere or at vacuum (confined) conditons
 - The worst case scenario considered was a rupture of 70m³ LH2 tank structure where a sudden release and exposure of big quantity of LH2 to ambiance was assumed.
 - The study of blast expansion has been performed at EMI in Freiburg where computational tool Apollo has been applied
 - In parallel with FLACS Gexcon
 - The yield of the blast depends on the amount of ignitable (premixed) hydrogen gas

Hydrogen at Test Site at DLR Institute of Propulsion Operation of Test/Near Term Engineering Activities

- Today the safety devices and equipment of the test cell is adressed in the design (design challenges):
 - Devices to restrict the amount of of free premixed hydrogen/air gas clouds
 - Application of gow plugs near test specimen (regular space arrangement)
 - Effect in case of ignition to the test specimen (LH2/LOX stage)
 - Detection of small intern/extern hydrogen leakages (maybe by remote visusal methods)
 - Device for detection of hydrogen leakages upstream/downstream of a onboard check valve installed at the filling line I/F to the stage within 5 min (remote controlled)
- Safe operation of LH2/LOX upper stage
 - Avoidance of sudden boil off situations inside the LH2 liquid body inside a tank
 - High flowrate release of LH2 via flare stack
 - possiblity to release LH2 to the flare (2h of 30l/s LH2 release (2.1kg/s))

 Simulation of flow considering heat transfer, chem reaction and multiphase flow at the flare stack tip

Hydrogen at Test Site at DLR Institute of Propulsion Unkowns and Interrests

- How many LH2 can be expected to be converted from liquid to gaseous phase when suddenly released to atmosphere ? (initial conditions for explosion and detonation)
 - Combined Physical processes (heat transfer, rupture of liquid body, mixing with air) not determined.
- In case of complete rupture of LH2 and LOX tank: what can be expected to happen after release inside the pool/chute
 - Secondary effects and **controlled** burn down inside the chute
 - Mixture LH2/OX (icing?)/N2 icing
 - Operation of water??
 - Artificial ignition sources
 - Control devices for observation after rupture of tank
 - DLR propose a subscale test (1:4-5) to simulate such sudden release and pool evaporation behaviour of LH2 with LOX (~15m3 LH2, 5m^3 LOX)

Hydrogen at Test Site at DLR Institute of Propulsion Technologie Request/Transfer of Technologies

- Accurate Measurement of flow of LH2
 - Calibration center in Europe for hydrogen calibration/ where is it?
 - In times of good perspektives of hydrogen it should be possible to realise it on institutional level at least!
- Accurate Measurement of temperature in LH2 range based on European technology
- Decrease/avoidance of GHe for operation of LH2 processes
- DLR will errect a fuel cell station as an electrical power production unit in cooperation with industry
 - First on basis of natural gas later use of GH2 waste gas
 - Storage of wind mill generated electricity
- Erection of GH2 fuel supply station is considered with industry
- Every year in Feb there a Hydrogen Day is organised by DLR Institute of Propulsion in order to promote the technologie