

Trygve Skjold & Helene Hisken Gexcon, Norway

Outline

- Motivation
- Fundamental challenges
- Practical challenges
 - Realistic geometries and scales
 - Validation and predictive capabilities
 - Structural response
- Acknowledgements

Motivation

- ➤ We need reliable engineering tools for estimating the consequences of accidental explosions.
- There are still knowledge gaps with respect to relevant fundamental physical phenomena.
- ► It is not realistic to construct practical engineering tools from first principles by a purely axiomatic approach.
- Experiments are often performed in idealized and downscaled geometries – extrapolation to actual industrial geometries is not straightforward.
- ► Blind-prediction studies represents an attractive way to evaluate consequence models and drive development.

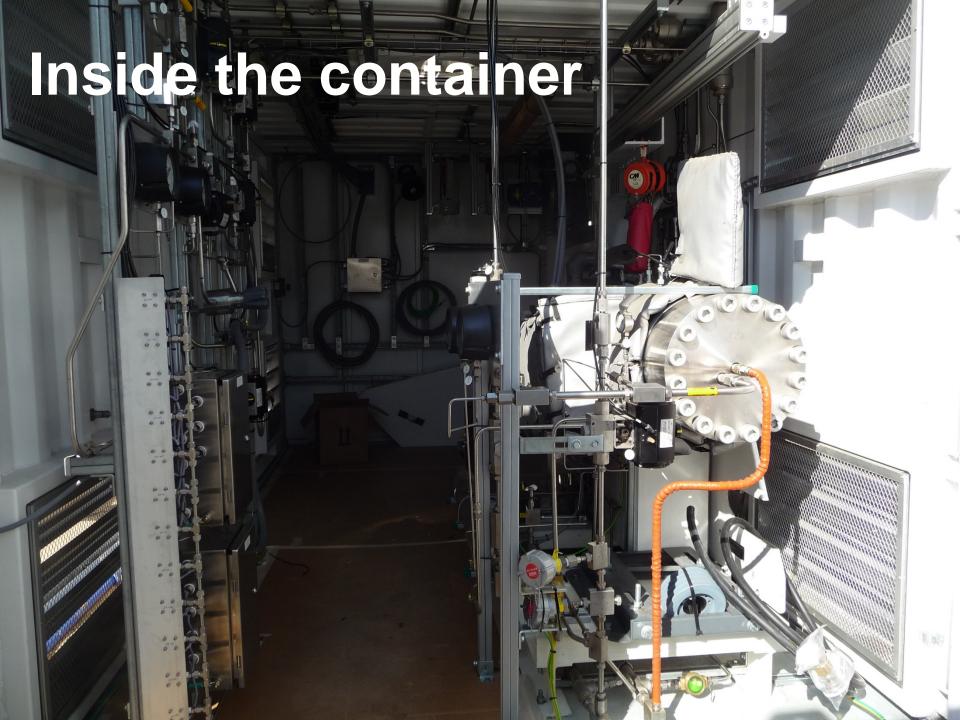
Geometry with medium level of congestion and low degree of confinement

Fundamental challenges

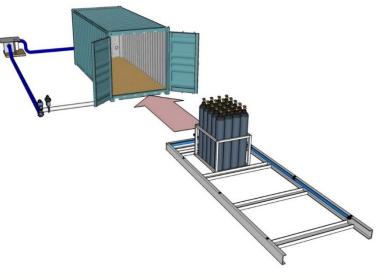
- Correlations for turbulent burning velocity
 - Laminar burning velocity for <u>entire</u> combustible range?
 - Markstein numbers/lengths for <u>entire</u> combustible range?
 - Markstein numbers for mixtures of hydrogen and other fuels?
 - The relative effect of other flame instabilities (than turbulence) on flame acceleration in complex geometries?
 - Reliable measurements of turbulence length scales (or spectrum)?
 - Effect of turbulence length scale on combustion?
- Deflagration-to-detonation transition (DDT)
 - Effect of spatial scale on DDT in congested geometries?

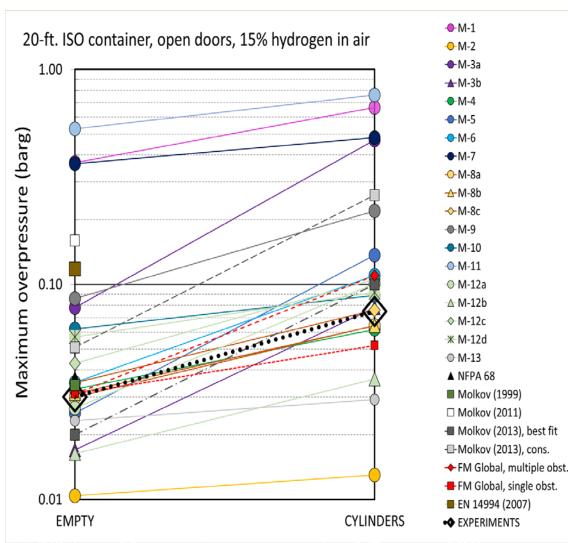
Practical challenges

- ► Realistic geometries
 - Effect of obstacles on flame acceleration
 - Effect of spatial scale on flame propagation
- Structural response and projectiles
 - Structural response is an inherent part of many accident scenarios
 - Projectiles may extend the safety distance beyond estimates based on flame length and decay of blast waves
- Modelling capabilities
 - Realistic representation of complex geometries
 - Blind-prediction studies for realistic systems



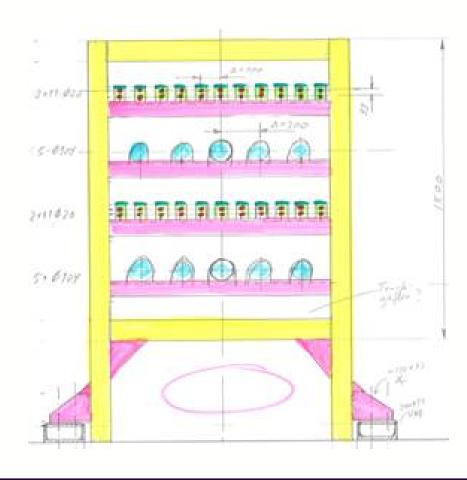
Compressor in ISO container





First HySEA blind-prediction

- Systematic validation must be an integrated part of model development
- ▶ Blind-prediction studies can be used to challenge consequence models



HySEA experiments

- ► Other obstacles and obstacle configurations
- Commercial vent panels on the roof
- ► Phase 2: Non-homogeneous clouds

Structural response

Open doors

VS.

Doors closed

Both test performed with 24% H₂ in air, homogeneous mixtures, and closed-end ignition.

www.hysea.eu

Prospects

- White-paper on fire and explosion for the Combustion Institute (on-going and related)
- ► Risk analysis: design, operation or compliance?
- Hydrogen can be implemented safely, but ...
- ▶ It is essential to consider safety in early design!
- Do not blindly use/trust standards or guidelines!
 - Verify application range!
 - Consult experts!
 - Manage risk!

Acknowledgements

► The Research Council of Norway (RCN) supports the Hy3DRM project under the ENERGIX program.

► The HySEA project (www.hysea.eu) receives funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671461. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and United Kingdom, Italy, Belgium and Norway.

Questions (or) Videos?

See also: http://syslagronn.no/2016/09/16/syslagronn/her-far-hydrogen-og-luft-kontaineren-til-eksplodere_153864/

