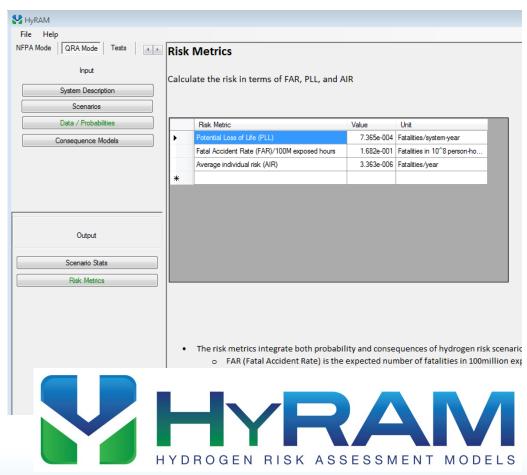
HyRAM model integration platform

Katrina M. Groth, Ph.D.

Sandia National Laboratories, Albuquerque, NM, USA


2014 HySafe Research Priorities workshop Washington DC, USA 10 November 2014

HyRAM* in one slide

- Integration platform for state-of-the-art hydrogen research
 - Modules to be developed by R&D community
- Software tool built to enable industry-led quantitative risk assessments (QRAs)
 - Puts the state-of-the-art
 R&D into the hands of H2
 industry safety experts

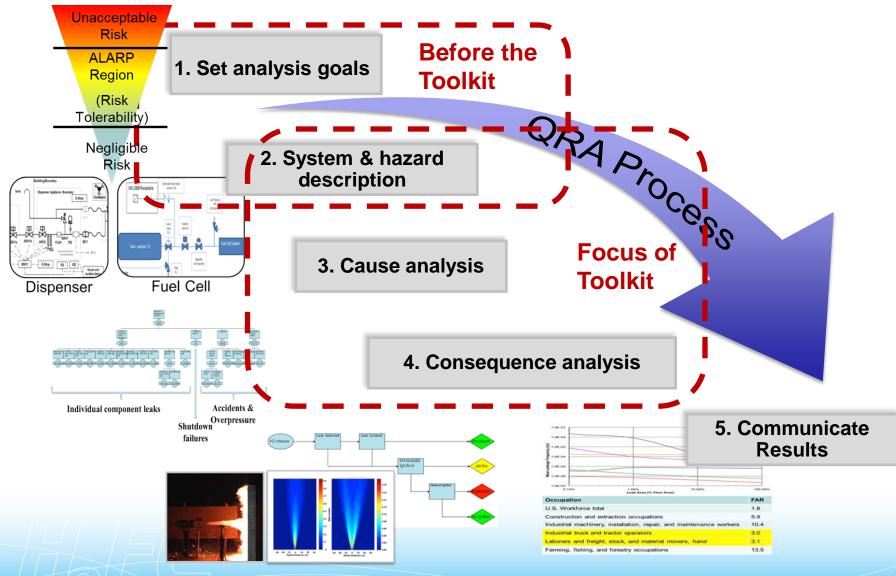
QRA brings science, rigor, into decision-making

- QRA used extensively in nuclear power, aviation, oil, gas
- Successful application of QRA in H2 codes & standards:
 - Established GH2 separation distances (NFPA2 Ch. 7)
 - Calculated risk from indoor fueling (NFPA2 Ch. 10) and identified ambiguity in NFPA2 Ch. 10 requirements
 - Development of calculation approach for ISO TC197 safety distances
 - PB (Performance-based) compliance option (NFPA2 Ch. 5)

Additional areas of application for H2:

- Enclosures (NFPA2 Ch7 and ISO TC197)
- Evaluate safety impact of different designs
- Understand which components drive risk/reliabilty (and which ones don't)
- Etc.

Challenges for enabling H2 QRA


- Challenge 1: Short commercial history requires the use of both deterministic and probabilistic models for H2 QRA
 - Limited statistical data for H2-specific component performance, leak frequencies, gas and flame detection, ignition, harm
 - Evolving understanding of H2 physical behavior and consequences
- Challenge 2: Lack of user-friendly tools for doing this type of analysis
 - Lack of hydrogen-specific models in current QRA tools
 - Lack of integrated QRA capabilities in current H2 consequence tools

Scoping an industry-focused tool

- Sandia & HySafe workshop (June 2013) -- define user needs, goals
- Two distinct stakeholder groups.
 - Users pilot the application of QRA toolkit for addressing specific industry questions.
 - High level, generic insights for C&S developers, regulators, etc.;
 - Detailed, site-specific QRA insights for system designers, insurers, authorities having jurisdiction (AHJs)
 - Developers Improve the data and models being used within the toolkit.

Participation & iteration by both communities is necessary for success

QRA Process Overview

Philosophy

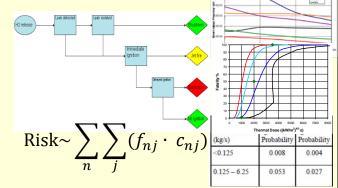
1. Set analysis goals

2. System & hazard description

3. Cause analysis

4. Consequence analysis

5. Communicate Results

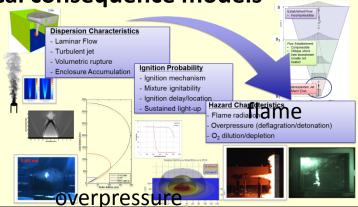

User-specific – Each country/analyst can establish own analysis goals, defines own system

User-neutral – All analysts apply established science & engineering basis (encoded in HyRAM)

H2 researchers are filling gaps in models, tools, data

QRA method, data & models

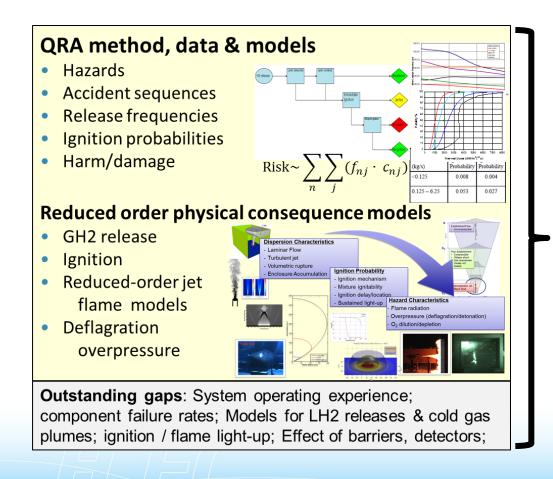
- Hazards
- Accident sequences
- Release frequencies
- Ignition probabilities
- Harm/damage

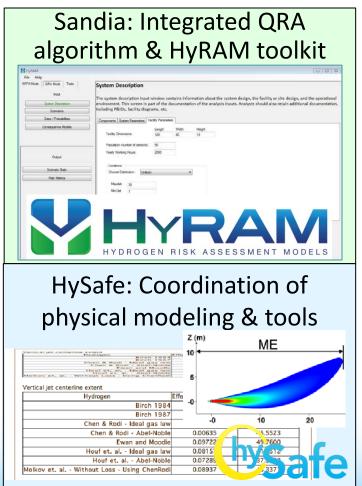


Reduced order physical consequence models

- GH2 release
- Ignition
- Reduced-order jet

models

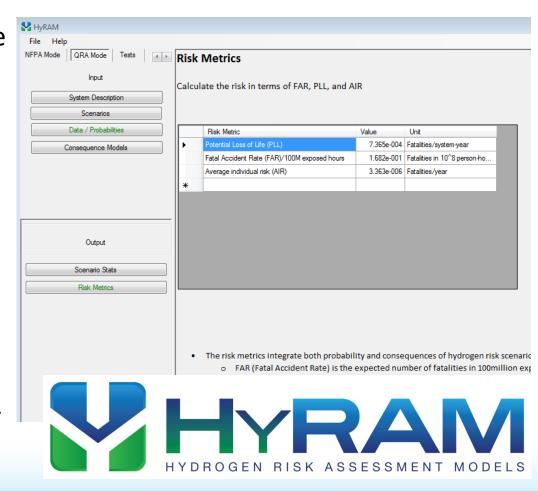

Deflagration



Outstanding gaps: System operating experience; component failure rates; Models for LH2 releases & cold gas plumes; ignition / flame light-up; Effect of barriers, detectors;

Sandia and HySafe are working to integrate those efforts

Objective: Facilitate H2 industry access to best science and engineering models to enable industry-lead QRAs



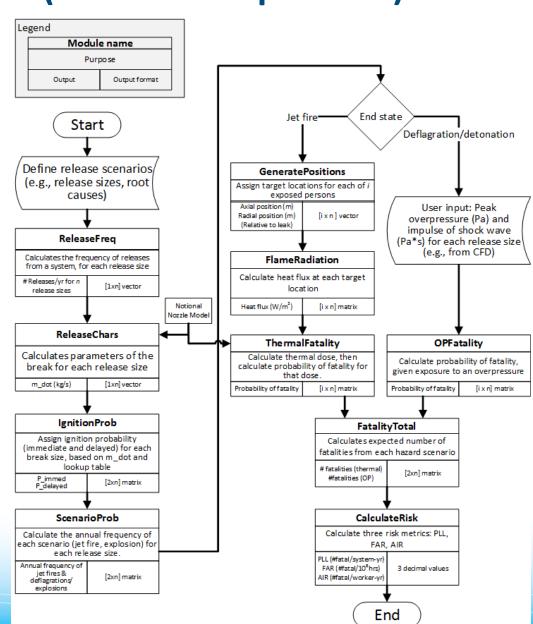
HyRAM: Hydrogen Risk Assessment Models

- Goal: Develop tools to enable industry-led QRAs (Quantitative risk assessments)
 - Include best-available models for:
 - All relevant hazards (thermal, mechanical, toxicity)
 - Probabilistic models & data
 - H2 phenomena (gas release, ignition, heat flux, overpressure)
 - GUIs and generic assumptions
 - Flexible software architecture to enable improvements as H2 science, data and models improve

14

Metrics [currently] supported in HyRAM

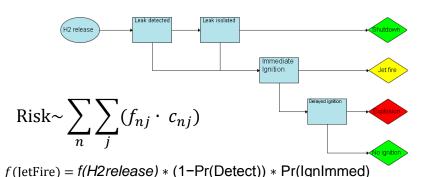
Calculates 3 risk metrics:


- FAR (Fatal Accident Rate)
 - Expected number of fatalities per 100million exposed hours
- AIR (Average Individual Risk)
 - Expected number of fatalities per exposed individual
- PLL (Potential Loss of Life)
 - Expected number of fatalities per dispenser-year.

And physical behavior of:

- Hydrogen jets
 - Width, velocity, density, ...
- Jet fires
 - Flame length, heat flux, ...
- **Deflagrations** (coming soon)
 - Ignitable volume, overpressure, ...

HyRAM toolkit modules (current and planned)


- .NET software framework (Windows) with planned HTML interface;
 - C# and Python
- Integrates best available probabilistic and deterministic models for:
 - Component failure
 - Ignition occurrence
 - Gas release
 - Gas dispersion
 - Jet flames
 - Deflagration / detonation
 - Harm to humans and structures

Modules: Cause & harm models (currently)

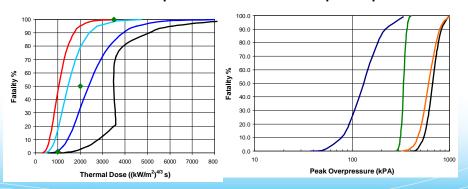
Accident sequences

 Hazards considered: Thermal effects (jet fire), overpressure (explosion/deflagration)

Release frequency

 Expected annual leak freq. for each component type -- Data developed from limited H2 data combined w/ data from other industries.

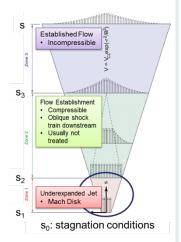
$$f(H2release) = \sum_{i=9 \text{ comps}} n_i * E(f(Leak)_i) \\ + E(Pr(accidents)) \\ * n_{demands}$$

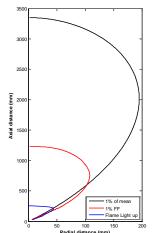

Ignition probability

- Extrapolated from methane ignition probabilities
- Flow rate calculated using Release Characteristics module

Hydrogen Release Rate (kg/s)	Immediate Ignition Probability	Ignition
<0.125	0.008	0.004
0.125 - 6.25	0.053	0.027
>6.25	0.23	0.12

Harm models

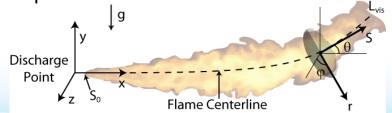

 Probability of fatality from exposure to heat flux and overpressures – multiple options



Modules: Behavior & Consequence (currently)

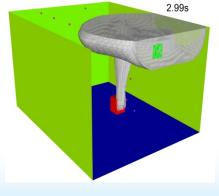
Release Characteristics

- H₂ jet integral model developed & validated
- Source models developed for LH2 & choked flow inputs


Ignition/Flame Light-up

(pending addition)

- Flammability Factor verified for ignition prediction
- Light-up boundaries identified
- Next: sustained flame prediction

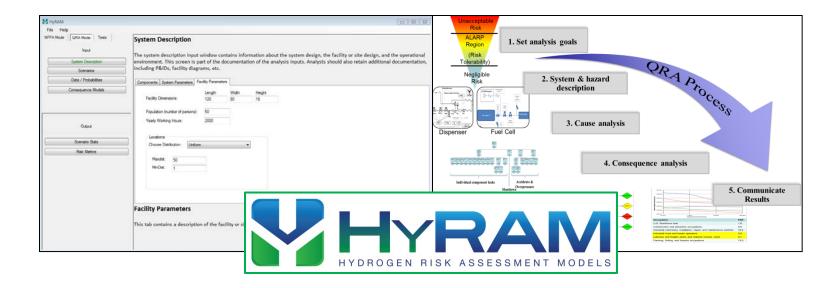

Flame Radiation

- Flame integral model developed
- Multi-source models significantly improve heat flux prediction
- Surface reflection can be a major potential heat flux contributor

Deflagration within Enclosures

- Ventilated deflagration overpressure explored experimentally and computationally
- Current QRA module requires CFD results.
- Engineering model framework pending

Next steps for the HyRAM toolkit:


- Initial working prototype (HyRAM 1.0alpha) user testing beginning ~Feb 2015.
- Extending algorithm scope with Sandia models
 - 2015: Add recent Sandia models: accumulation, overpressure
 - 2016: Traditional QRA interface options (Fault Trees, Event Trees)
 - 2017: Cryogenic behavior
- Interface with international data & model selection/development work to expand science base of HyRAM
 - 2015: Code interface manual and algorithm manuals
- Long-term:
 - Transfer of toolkit to third party (HySafe?) for maintenance, hosting, ongoing support via "community owned" model.

Major HyRAM needs from HySafe

- In one sentence: Models, data, validation & community engagement
- Specifically:
 - Engagement with partners to refine QRA approach, standardize, review
 & adopt models (international and domestic, research and application)
 - Behavior models specifically developed & validated for application to hydrogen fuel cell problems
 - Developed as standalone C#, Python modules.
 - Lab-scale experiments, full-scale experiments, simulation for behavior models
 - H2 data for improving credibility of probabilistic event models (e.g., release frequencies, harm)
 - Validation activities to enhance credibility of behavior models and data originating from non-fuel-cell applications.

Summary

- HyRAM is an integration platform for state-of-the-art science & engineering models to facilitate industry-led QRA.
 - H2 industry has strong desire to use risk-informed decision making
 - Industry needs tools, and they need to be user-friendly, coordinated, and credible.
- Current state:
 - HyRAM 1.0alpha is almost ready for user testing
 - Additional Sandia models being added over next years
- Major needs:
 - Models, data, validation and community engagement
 - Ongoing efforts to identify robust data and models for toolkit
 - "Community ownership" model

Thank you!

Katrina Groth
Sandia National Laboratories

kgroth@sandia.gov

Research supported by DOE Fuel Cell Technologies Office (EERE/FCTO)

