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Models vary in terms of computational resources
required, resolution, and fidelity

e Computational Fluid Dynamics
— DNS, LES, RANS
— dimensions (symmetry?)

— transient vs. steady-state

- C h e m i St ry http://mww.princeton.edu/cefrc/Files/2012%20Lecture

%20Notes/Chen/Princeton-CEFRC-Summer-School-
Chen2.pdf

e Reduced order models
— limit to centerline coordinate (1-D) T

— assume profile around centerline coordinate

e All models require validation

— validation data accuracy

— boundary conditions
— range of use
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We focus on validated reduced-order models that
can inform risk models
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Dispersion Characteristics
- Laminar Flow

- Turbulent jet
- Volumetric rupture
- Enclosure Accumulation

Ignition Probability
- Ignition mechanism
- Mixture ignitability

- Ignition delay/location __
- Sustained light-up Hazard Characteristics

- Flame radiation

e - Overpressure (deflagration/detonation)
[+ ‘ - O, dilution/depletion

Risk requires a Release, then Ignition, forming a Hazard, causing Harm
* We quantify each of these events using models
* Purple events quantified with statistical models, Red with reduced-order behavior models
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Our goals are to quantitatively model the release
and hazard behaviors
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Internal flows can be effectively modeled using a
network flow model (NETFLOW)

e 1-D conservation equations
solved for an ‘electrical’ network

e nonlinear ‘resistors’ account for
flow friction

e ‘voltages’ (pressures) are
functions of temperature and
composition

e any component with a known
relationship between pressure
drop and flow can be modeled

e currently only for compressible
gas flows
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Choked flow can develop from high-prssure
sources

Ruggles, Ekoto, IJHE, 2012
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Approach:

e Notional nozzle to describe effective velocity, diameter,
thermodynamic state downstream of the shock structure
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Data is needed for a validated notional nozzle model

Approach:

e Use non-intrusive diagnostics (Rayleigh scattering, Schleren imaging)
to quantify jet spreading and flow structure

e Fit model that includes fluid flow across shock and in slip region (with
accurate state modeling)
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Releases from non-circular orifices show that the jet
spreads fastest along the minor axis

Schlieren images of jet exit
shock structure
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Jet profiles collapse to a single curve far from nozzle

Collapsed profiles deviated from the axisymmetric values and were no
longer Gaussian
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Results suggest it should be possible to develop a modified slot jet integral model
— remains unclear for lager storage pressures & aspect ratios
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A 1-D plume model can describe 3-D flow (in cross-

wind) after profile becomes fully developed

assumption: fully-developed Ve (_ﬁ)
velocity & concentration Ver B .
profiles are Gaussian P pamb (_ re )
B: velocity jet width PCL ~ Pamb AB i
J: concentration-to-velocity jet ~ _#Y  _ (_ r’ )
width ratio perYor B .

parameters based on empirical data
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Flammability factor provides sound basis for
identifying jet flame ignition boundaries
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A 1-D flame model can describe 3-D flames,
including buoyancy and wind
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A multi-source radiation model can account for
variable flame width and curvature

Hankinson & Lowesmith, Comb & Flame, 2012
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Walls reduce the hazards and change plume shape
but reduced-order models require development

Schefer et al., JHE, 2009
Possible to:

e reduce extent of flammable cloud
e deflect jet flames

e reduce magnitude of radiative heat
flux

* minimize ignition overpressure

But necessary to consider:
T(K)
2335

1806
1277
749
220

e reflection of radiative heat flux

e flammable concentrations can
increase in some areas

Is it possible to reduce the dimensionality
with self similar solutions?
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The buoyancy of hydrogen often causes stratified
mixtures to form

e accumulationin ceiling layer

e ventilation can cause mixing

e hydrogen can be drawn in vents (importance of plume modeling)

1000m’ 1500m’ 2000m’
layer volume:

dWVayer
diye - Qjet - Qout
layer concentration:
dc
{/Iayera — QHg(l - C) - CQair
Lowesmith et al., IJHE, 2009

Time = 5.9907 Time = 5.9907 Time = 5.9907

Houf et al., IJHE, 2012
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Ignition of an accumulated mixture can cause a
significant overpressure hazard

Groethe et al., JHE 2007
e CFD can effectively model

complex configurations

e Reduced order models need
to consider effects from:

2588 ps

— flame instabilities
— obstacles

— stratified mixtures

w
o

— volumetric venting

total flammable mass
/"Q layer flammable mass

]
w

e external ignition reduced-

measurement - ignition near vehicle
o rd er ove rp ressure m Od el X measurement - ignition at ceiling
needs development
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Summary

Research needs:

Effective reduced-order N T oy e

models: change network flow
* plume notional nozzle model
o flammability limits non-circular orifice

o flame WEIAEIIES

e multi-source radiation — pressure

e accumulation/layer — radiation

e overpressure non-enclosed overpressure

transient effects

e Validation data over a wide range of conditions, with
clearly defined boundary conditions
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