QRA Tools - Gaps, Methods, Models Tools

Katrina M. Groth, Ph.D.

Sandia National Laboratories, Albuquerque, NM, USA

2014 HySafe Research Priorities workshop
Washington DC, USA
11 November 2014

QRA Method Overview

Previously: Gaps from 2012 HySafe document

- 1. Hydrogen-specific data for updating probability models
 - Component leak frequencies
 - Gas and flame detection probability
- 2. A credible probability model for ignition occurrence
- 3. Simplified models of physical effects for deflagration/detonations
- 4. Inclusion of human, software, & organizational failures
- 5. Pilot study of external hazards (e.g., earthquakes, high winds)
- 6. H2-specific harm models (deterministic criteria, probit models)
- 7. Guidance on the use of risk insights in decision making
- 8. Uniform cost-benefit criteria for use in evaluating acceptable risk levels

New approach to thinking about gaps

- Approach:
 - SNL/HySAFE QRA gap analysis workshop to identify gaps & set priorities
 - Sensitivity analysis of gaps with HyRAM
 - Added (and ongoing) focus on impact of the gaps
 - Framing out "QRA success"

Sandia/HySafe H2 QRA needs workshop

Specifics:

- Hosted by Sandia (SNL) and HySafe Washington DC, June, 2013
- Attendees from industry, academia, research, C&S, government
- Final report: K. Groth & A. Harris (Sept, 2013). Hydrogen Quantitative Risk Assessment Workshop Proceedings. **SAND2013-7888**.

Objectives:

- Understand the goals & needs of early (non-research) users of H2 QRA
- Introduce Sandia QRA methodology and toolkit
- Establish specific user needs and priorities for QRA

Results:

 Identified key priorities for improving H2 QRA; Summarized in SAND2013-7888

Workshop results (1): User needs

- User groups interested multiple types of analysis:
 - High level, generic insights for C&S developers, regulators, etc.;
 - Detailed, site-specific QRA insights for system designers, insurers authorities having jurisdiction (AHJs)
- Most users interested in: relative risk comparisons; graphical output
- Many different preferred risk metrics
- Need for guidance, training for different users
- Established timeline for updates to "user" version

Workshop results (2): Developer needs

- Collective ownership & development among the hydrogen safety community, free license
 - International H2 community (e.g, SNL, H2CAN, KIT) as developers
- Current QRA tools lack validated models and data for hydrogen fuel cell analyses.
 - Datasets must be developed specifically for use in the toolkit both users and developers can contribute
 - Need behavior models to enable consideration of: gas dispersion, overpressure, buoyancy-dominate releases
 - Need to handle duration and timing aspects (e.g., of release and ignition)

QRA- What does success look like?

- Complete Encompasses all hazards and consequences, entire system (asbuilt and as-operated),
- Comparable Differences in QRA results should be due to differences in designs, not due to model choices
- Robust
 - Validated Experimentally validated, simulation-supported physical models; and system-specific data
 - Or at least Standardized set of models and data (if unable to validate)
 - Relevant To this system, in the range of use of the models
- Repeatable & Verifiable Different teams should be able to produce the same result
 - Requires: Defined objectives and scope
 - Requires: Clear definitions of failure modes, consequences, the system, and criteria (or data used) to assign severity and likelihood
 - Requires: System, data, models, and analysis are sufficiently documented for a peer reviewer to evaluate correctness

Challenge: A quality QRA incorporates a large body of information from different areas

Specific data needs

- Statistical information, Physical models, Expert analyses
- a. Identify accident scenarios
- b. Quantify accident scenarios
 - Release frequencies leaks, accidents, etc.
 - Component failures
 - Ignition probabilities, timing
 - Detection, Isolation probabilities and timing
- c. Physical consequences (For a range of parameters relevant to hydrogen systems)
 - Fluid release, dispersion & accumulation
 - Fire properties (jet flames, flash fires)
 - Heat fluxes
 - Overpressures (Confined space, Propagation in open)

Motivation for HyRAM: Enable QRA success

Goal	Means
Completeness	Use comprehensive modeling tool
Comparability	Use standard, flexible modeling tool
Robustness	 Use validated models (as available), standardized models if you don't. Update models as knowledge improves
Repeatability	Document the analysis
Verifiability	Use the same tool throughout the industry

Motivates building a unifying framework

HyRAM + H2 R&D community

Quantifying gaps with HyRAM: Sensitivity analysis (Indoor fueling model, single param.)

Case	FAR	
Baseline indoor fueling analysis	0.17	
Uncertainty about modeled overpressures	<mark>0.50</mark>	
(Multiply by 10)		
Uncertainty about ignition probability.	<mark>2.60</mark>	
(multiply by 100)		
Uncertainty about ignition probability.	<mark>1.35</mark>	
(multiply by 10)		
Uncertainty about the <u>design</u>	<mark>1.58</mark>	
(Multiplying # of components by 10)		
Uncertainty (under-prediction) about <u>leak</u>	0.51	
rate (use 95 percentile).		F
Multiply <u>number of vehicles</u> by 10	0.27	
Change leak detection probability to 0%	0.19	
Change <u>leak detection</u> probability to 50%	0.093	
Change thermal exposure time to 180s	0.21	1
Change thermal exposure time to 30s	0.15	
Use Tsao instead of Eisenberg thermal	0.20	
probit model		•

Goal: Identify which uncertainties matter the most

Yellow denotes FAR > 0.3, which means the risk that *exceeds* tolerable threshold

Impact: Being wrong here changes the decision

Less critical uncertainties (Being uncertain doesn't change the decision)

Disclaimer: These are model-specific results from a small model – need to run additional cases to verify

HyRAM needs from R&D community

- R&D community provides user confidence in underlying models
- HyRAM needs models, statistics, and data for H2
 - Behavior models specifically developed & validated for application to hydrogen fuel cell problems
 - Lab-scale experiments, full-scale experiments, simulation
 - H2 data for improving credibility of probabilistic event models (e.g., release frequencies, harm)
 - Validation activities to enhance credibility of behavior models and data originating from non-fuel-cell applications.
- Engagement with partners to refine QRA approach, standardize, review & adopt models (international and domestic, research and application)

Critical gaps

- User-friendly, industry-focused software tools (with strong scientific foundation & rigorous documentation) to enable risk-informed decision making
- 2. Guidance on the use of risk insights in decision making
- Simplified models for predicting overpressures; cryo-release behavior, barrier walls
- 4. A validated probabilistic model for ignition occurrence
- 5. Hydrogen-specific data for updating probability models
 - Leak & release data
 - Component failure rates
 - Component leak frequencies
 - Accidents
 - Human, software, & organizational failures
 - Gas and flame detection probability

...And why they matter

Completeness gaps:

- Simplified models for predicting overpressures
- Simplified models for predicting cryo-release behavior,
- Simplified models for predicting impact of barrier walls
- Human, software, & organizational failures
- Comprehensive software tool

Comparability gaps:

Need for software tools to enable comparable analyses

Robustness gaps:

- A validated probability model for ignition occurrence
- Validation for models for overpressures; cryo-release behavior; barrier walls
- Hydrogen-specific data

Repeatable & Verifiabl gapse

- Guidance on the use of risk insights in decision making
- Software tools to enable standardized analyses & rigorous documentation of the models used in those tools

Thank you!

Katrina Groth
Sandia National Laboratories

kgroth@sandia.gov

Research supported by DOE Fuel Cell Technologies Office (EERE/FCTO)

