

HySafe Research Priorities Workshop

Washington DC, 10-11 November 2014c

H2FC Cyber-Laboratory: Open access engineering and modelling tools

James Keenan, Vladimir Molkov
Hydrogen Safety Engineering and Research Centre (HySAFER)

j.keenan@ulster.ac.uk, v.molkov@ulster.ac.uk, http://hysafer.ulster.ac.uk/

H2FC Cyber-Laboratory

- Goal: Defragmentation and improvement of the einfrastructure for hydrogen and fuel cell research.
- Development of a comprehensive, properly validated and openly available set of software tools and models.
- Sustainability: Cyber-laboratory will be maintained and continuously updated (after the end of the H2FC project as a part of European e-Infrastructure for H2FC research)
 H2FC

	H2FC Model Framework
(H2FC Sage Framework
(Registration for H2FC Frameworks: Send email to sharepoint ad h2fc.

Available engineering tools

- Fuel Cells (CEA):
 - Mass balance for a PEM Fuel Cell
- Safety (UU):
 - + Hydrogen expanded jet parameters (ideal gas)
 - + Hydrogen under-expanded jet parameters (real gas)
 - Free jet model for ideal gas (HSL)
 - Adiabatic blowdown of a storage tank
 - ❖ Isothermal blowdown of a storage tank
 - Pressure peaking phenomenon, constant flow rate (unignited)
 - Pressure peaking phenomenon, tank blowdown (unignited)
 - Flame length and three separation distances for jet fires
- Storage (NCSRD):
 - Gas Storage in Hydrates

Safety tools in development (UU)

- Calculation of maximum hydrogen concentration in an enclosure with one vent and steady-state release
- Vent sizing for deflagration in an enclosure fully filled by flammable hydrogen-air mixture
- Vent sizing for localised mixture deflagration in an enclosure
- Pressure peaking phenomenon for jet fires
- Blast wave decay from high-pressure tank rupture in a fire
- Calculation of fire resistance rating of storage tanks

Storage tools to be added (NCSRD)

- Design and Assessment of Storage Systems:
 - Acceptability envelope
 - System design (e.g. Hydride beds)
 - http://hsecoe.srs.gov/models.html
- Performance analysis and cost modelling:
 - Integrated Power Plant and Storage System Modelling
 - Material Operating Requirements
 - http://hsecoe.srs.gov/technologyareas.html#performanceanalysis
- Hydrogen Storage Systems Modelling and Analysis:
 - Compressed / Cryo-compressed tanks (liquid and gaseous)
 - Storage in metal-organic framework (MOF) materials
 - Systems that require off-board regeneration of the depleted material
 - http://www.transportation.anl.gov/fuel_cells/hydrogen_storage_modelinganalysis.html

Cyber-laboratory: an example of use

- Let us estimate what hazards are from currently available FC vehicles:
 - ❖ Deterministic separation distances at the open (three for jet fire from TPRD)
 - Fire resistance rating estimation (by blowdown time)
 - Pressure peaking phenomenon in a typical garage

Representative scenario:

Collision leading to opening of TPRD in FCH car (open air)

Parameter	Value (units)
Storage pressure	35 MPa [1]
Storage volume	0.171 m ³ [1]
TPRD diameter	1, 2, 3, 4.2 [2], 5 mm
Storage temperature	20°C

^{1.} Honda FCX specifications, http://www.hondaclarity.org/

^{2.} Yohsuke, T. et al., "The spread of fire from adjoining vehicles to a hydrogen fuel cell vehicle", IJHE, 39, pp 6169-6175, 2014

^{3.} Adams, P., "Identification of the optimum on-board storage pressure for gaseous hydrogen city buses", EIHP2, 2004

^{4.} Yokoo, T., "Toyota's Development of Fuel Cell Hybrid Bus ("FCHV-BUS") and FCHV-BUS Business in Japan", 6th International Fuel Cell Bus Workshop, 4th June, 2009

Deterministic separation distances

Parameter	Value (units)	
Storage pressure	35 MPa	
Storage volume	0.171 m ³	
TPRD diameter	1, 2, 3, 4.2, 5 mm	
Storage temperature	20 °C	

TPRD diameter (mm)	Flame length (m)	"No harm" (70°C)	"Pain limit" (5 mins / 115°C)	"Third degree burns" (20 s / 309°C)
1	2.6	9.1	7.8	5.2
2	5.2	18.2	15.6	10.4
3	7.8	27.3	23.4	15.6
4.2	10.9	38.2	32.8	21.9
5	13.0	45.5	39.0	26.0

Blowdown time (by blowdown time)

Blowdown time variation depending on orifice diameter:

Pressure peaking

- What if our car is parked in the garage?
 - ❖ 35 m³ vol. (≈ garage), vent = 0.0125 m² (1 × typical brick)

Parameter	Value (units)
Storage pressure	35 MPa
Storage volume	0.171 m ³
TPRD diameter	1, 2, 3, 4.2, 5 mm
Storage temperature	20 °C

Which TPRD diameter you want?

- ❖ To select appropriate TPRD diameter: blowdown time, pressure peaking phenomenon, flame length and corresponding separation distances must all be considered in aggregate.
- Fireball from the garage and projectiles are other issues to address.

Concluding remarks

- Cyber-laboratory forms first step in creation of "onestop-shop" for the whole FCH community.
 - Networking
 - Modelling / Simulation / Engineering tools
 - Data exploration / research / visualisation
 - User interfaces / open web services
 - Education: "Virtual knowledge centre"
- To provide open access to FCH digital resources, tools and services
- More effective collaboration between researchers
- Higher efficiency, creativity and productivity of research
- Newly developed correlations to be added as they are become available: *Must be published and validated*.

Acknowledgment to the EC under FP7 for funding the H2FC project (www.h2fc.eu). Cyber-laboratory currently available on the H2FC website (http://h2fc.eu/cyber-laboratory)

MSc in Hydrogen Safety Engineering (distance learning course): http://www.ulster.ac.uk/elearning/programmes/view/course/10139

Fundamentals of Hydrogen Safety Engineering (free eBook, http://bookboon.com, search "hydrogen", available since October 2012)