Fuel Cell Technologies Office

Safety, Codes and Standards Program Overview

HySafe R&D Prioritization WorkshopNovember 11, 2014

Will James

Team Lead

Safety, Codes and Standards Program

Fuel Cell Technologies Office

U.S. Department of Energy

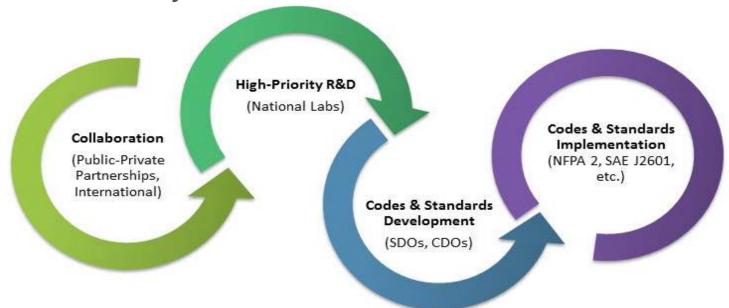
DOE Technical Strategy

Successful commercialization of hydrogen technologies depends on a foundation of safety and standards development:

- Comprehensive system of codes and standards
- Cost-effective, reliable, safety technology
- Harmonized permitting and certification
- Accessible education and targeted training

Key C&S elements for commercial viability:

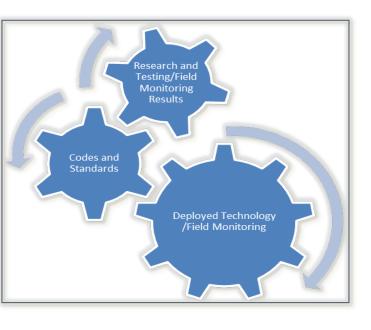
- Consistent/complete codes & standards (SDOs/CDOs)
- Technical criteria/guidance for safe, low-cost options
- Common/adopted certification (GTR effort)
- Saleable hydrogen (H₂ quality projects)
- Awareness and education for hydrogen safety



DOE Safety, C&S Activity Pyramid

Codes and Standards

Objective: Support and facilitate development and promulgation of essential codes and standards by 2015 to enable widespread deployment and market entry of hydrogen and fuel cell technologies and completion of all essential domestic and international RCS by 2020

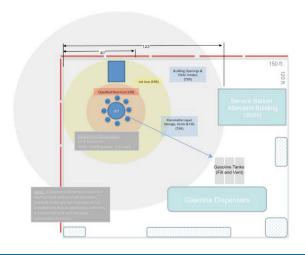

2014 Accomplishments

- NFPA 2 integrated into the IFC enables a domestic-wide codification for the deployment of hydrogen infrastructure
- GTR adopted by UNECE Working Party 29 becomes technical underpinning for the Federal Motor Vehicle Safety Standard (FMVSS)
- Refueling standard, SAE J2601, enables 3-5 minutes fast fill

Continuous C&S Approach

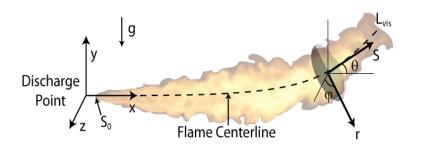
CCSI allows an integrated approach that builds on lessons learned from deployment to provide feedback to the C&S committees

- Examples of potential inputs or data gathering source(s):
 - Regular review (at least every 6 months) of NREL technology validation data to identify issues (NFCTEC)
 - Annual site visits to key hydrogen fueling stations provide information on Safety, Codes and Standards issues (e.g. – HSP or NREL)
 - Interviews with code officials and project developers to identify issues with actual code application (for example, requirements that are worded such that they are difficult to enforce and comply with)
 - Participation on technical committees to ensure that research and field data are effectively linked to code development


Accelerate Deployment of HRS

Initiate performance-based design and liquid release tasks to impact the deployment hydrogen fueling stations

Performance-Based Design (PBD)


- Demonstrated the use of the QRA toolkit to develop and analyze a PBD
- A PBD Brief has been prepared for a representative refueling station

Demonstrating successful use of PBD option may significantly increase number of available sites - if industry can use PBD option in a cost-effective manner

Liquid Releases

- Current Separation distance are large and makes citing LH₂ stations difficult
- Leverage experience from gaseous hydrogen work
- Leverage industry through participation in NFPA 2/55

Develop work plan for liquid hydrogen releases and initiate **initial experiments in FY2015**

NREL and **SNL** Provide:

- Technical expertise Hydrogen specific materials and systems
- <u>Facilities</u> for technical collaboration and validation
- Objectivity –
 Independent and objective assessment

in support of H₂ USA

Hydrogen Fueling Infrastructure Research and Station Technology

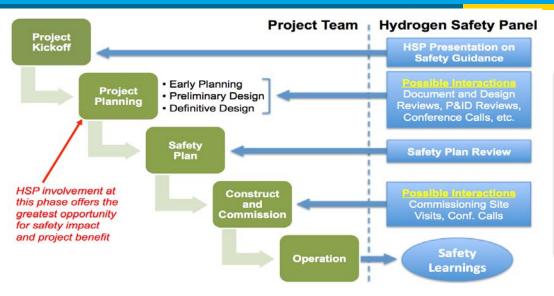
Leverage DOE National Lab Network

Project Teams:

- Station Qualification
- DispenserComponentsResearch
- Fuel Quality Sensor
- Station Component RD&D
- Reference Station Design

Safety Program Support

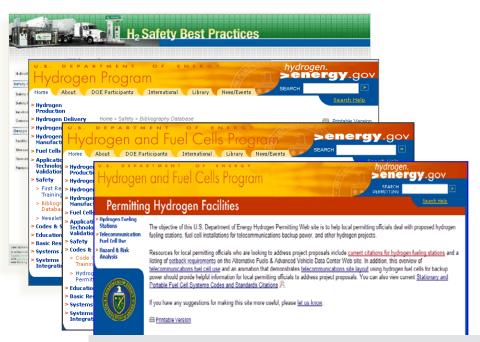
Leveraging expertise and resources from key domestic and international communities to deploy hydrogen and fuel cell technologies safely


Objectives

- Ensure that best safety practices underlie research, technology development, and market deployment activities supported through DOE-funded projects.
- Develop and enable widespread sharing of safety-related information resources and lessons learned with first responders, authorities having jurisdiction (AHJs), and other key stakeholders.

Hydrogen Safety Panel

Earlier involvement by the HSP, managed by PNNL, offers great opportunity to impact projects



Authored a May/June 2014 NFPA Journal® article focusing on hydrogen safety which highlights the Hydrogen Safety Panel and DOE's Hydrogen Emergency Response Training for First Responders circulated to (70,000 individuals in 100 countries)

Activity	Since the 2013 AMR	Total for the Project Duration
Project Reviews (including safety plans, site visits reviewed, follow-up interviews and design review activities)	12 (includes 3 early project reviews)	395
Panel Meetings	2 (Washington, DC and Golden, CO)	20
White Papers & Recommendations (e.g., Safety of Hydrogen Systems Installed in Outdoor Enclosures)	1	7
Publications and Presentations (both projects combined total)	5	39

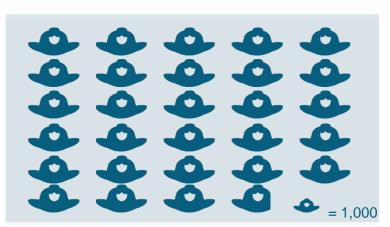
Safety Knowledge Resources

Hydrogen Safety Bibliographic Database Permitting Hydrogen Facilities Introduction to Hydrogen for Code Officials Hydrogen Safety Best Practices Manual

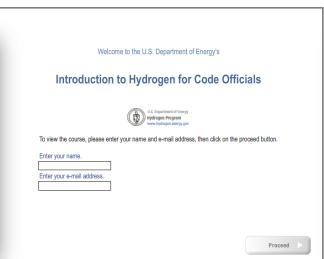
H₂ Safety Snapshot bulletin Introduction to Hydrogen Safety for First Responders Hydrogen Incident Reporting Database

www.eere.energy.gov/hydrogenandfuelcells/codes/

SCS Training Totals and Impacts


First responder training at PNNL is important to enable commercialization of fuel cell and hydrogen technologies

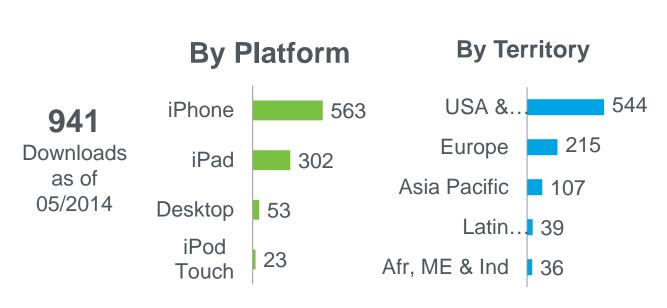
http://hydrogen.pnl.gov/FirstResponders/


- TOTAL First Responders Trained = 28,000+
- Emphasis within H2USA and the Market Support and Acceleration Working Group
- Works closely with the CaFCP to conduct training across California
- International Collaboration with FCH JU funded HyResponse project.

SCS Training Totals and Impacts

Code official training at NREL is an important outreach tool to enable commercialization of fuel cell and hydrogen technologies

http://www.hydrogen.energy.gov/training/code_official_training/


- TOTAL CODE OFFICIALS TRAINED = 1,200+
- Most recent training occurred on May 19th
 (Huntington Beach) and May 27th (Culver City)
 through the CEC and CaFCP
- Emphasis within H2USA and the Market Support and Acceleration Working Group

New Ways to Share Safety Knowledge

First mobile app developed for the Fuel Cell Technologies Office

- Released in September 2013
- Integrates H₂incidents.org and H₂bestpractices.org into a single, searchable, iPad and iPhone application
- Features include safety planning guidance and checklists
- All tools (except H₂incidents.org) are available without a data connection

A Transformative Step Towards Hydrogen Adoption

> Credible and reliable safety information from a trustworthy source

SCS Outreach (Webinars, Key reports, Workshop, etc)

Webinars

1st Bilateral International Webinar – Jointly between U.S. and E.C. (in conjunction w/ICHS5) What Can We Learn From Hydrogen Safety Event Databases? (Sept 10, 2013)

http://energy.gov/eere/fuelcells/downloads/what-can-we-learn-hydrogen-safety-event-databases

Hydrogen Compatibility of Materials (August 13, 2013)

http://energy.gov/eere/fuelcells/downloads/hydrogen-compatibility-materials

Key Reports

Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis (Sandia National Laboratory) – October 2013 (w/Delivery Program)

Rachael Barth, Kevin Simmons (PNNL), and Chris San Marchi

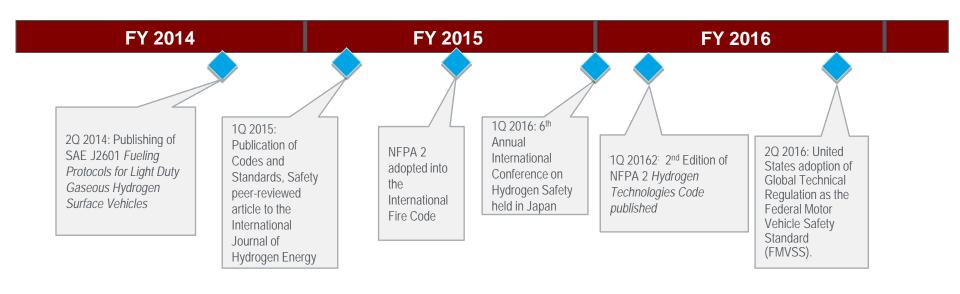
Safety, Codes and Standards for Hydrogen Installations: Hydrogen Fueling System Footprint Metric Development (Sandia National Laboratory) – April 2014

Aaron Harris, Daniel Dedrick, Chris LaFluer, and Chris San Marchi

Workshop

Hydrogen Quantitative Risk Assessment Workshop – co-hosted by SNL and IA HySafe

June 11-12, 2013 in Washington, D.C.



Recent and Upcoming Activities

Summary of activities and upcoming milestones

- Define the impact of fast fueling (SAE standard J2601) on hydrogen station requirements.
- Quantify the impact of liquid hydrogen release to help define reduced separation distances outlined in NFPA 2/55 from the current requirement of 75 feet from vents/openings.
- Develop a hydrogen fueling station template that includes the safety codes necessary for widespread commercialization of infrastructure
- Coordinate with State of California (CEC) to accelerate station deployment
- Determine fuel purity requirements and the impact of cleaners/degreasers for hydrogen components

Collaborations

International

- International Partnership for Hydrogen & Fuel Cells in the Economy
 - 17 countries & EC, 30 projects
- Independent Projects (EU, Japan, Korea, etc)

State & Regional Partnerships

- California Fuel Cell Partnership
- California Stationary Fuel Cell Collaborative
- SC H₂ & Fuel Cell Alliance
- Upper Midwest Hydrogen Initiative
- Ohio Fuel Coalition
- Connecticut Center for Advanced Technology

External Input

- Annual Merit Review & Peer Evaluation
- H₂ & Fuel Cell Technical Advisory Committee
- National Academies, GAO, etc.

Safety, Codes and Standards

National Laboratories

Lawrence Livermore Los Alamos NREL

Oak Ridge

Pacific Northwest Sandia Savannah River

Federal Agencies

DOT NASA

- Interagency coordination through stafflevel Interagency Working Group (meets monthly)
- Assistant Secretary-level Interagency Task Force mandated by EPACT 2005.

Industry Partnerships & Stakeholder Assn's.

- Tech Teams (USCAR, energy companies- U.S. DRIVE) – GM, Ford, DOT, CaFCP, Exxon
- Fuel Cell and Hydrogen Energy Association (FCHEA)
- H2USA
- Various CDOs & SDOs (SAE, NFPA, ISO, CSA, ICC, etc)

For more information contact:

Will James - Team Lead 202-287-6223 charles.james@ee.doe.gov

Laura Hill (ORISE Fellow)

202-586-8384

laura.hill@ee.doe.gov

Jay Keller

925-519-2043

jay.keller@zces-inc.com

Kristian Kiuru

Support contractor

202-586-1738

kristian.kiuru@ee.doe.gov