

Update on hazard assessment toolkit project from KIT

T. Jordan

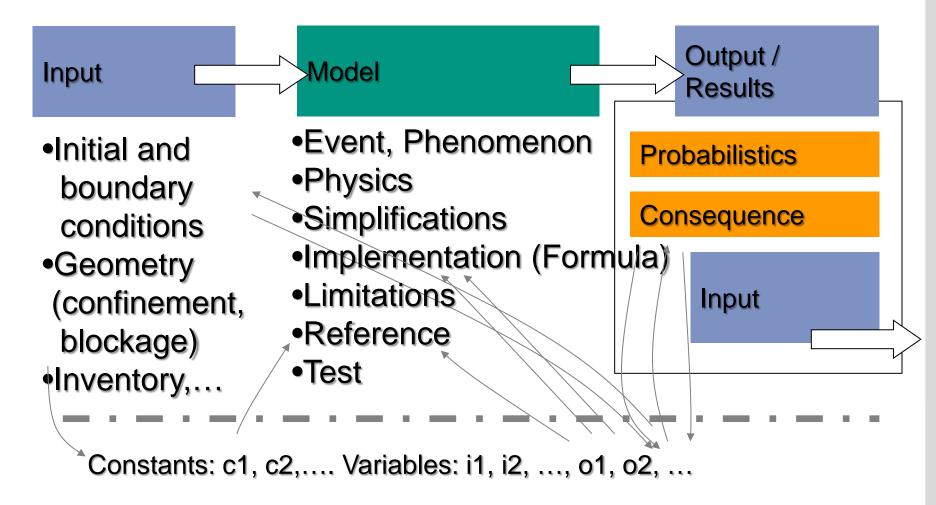
Hydrogen Group Institute for Nuclear and Energy Technologies (IKET)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

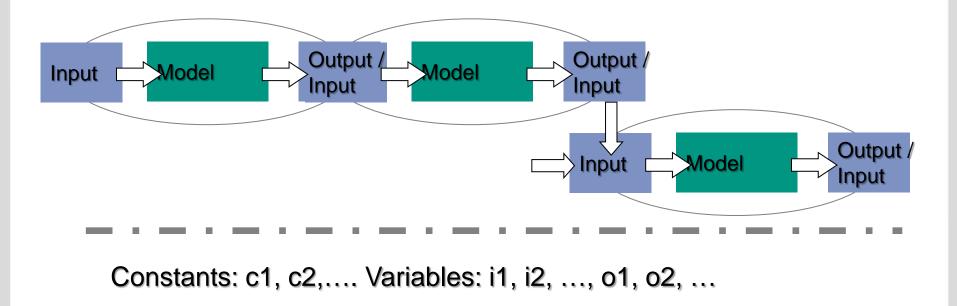
Basic Concept

- Free and open set/collection of tools for risk assessment
- Based on published engineering correlations
- Highly modular "dispatched" design
- Easy and safe to use, on- and offline
- Fast response times
- Well documented, quality assured
- Commonly defined and developed

Based on IEA HIA spirit Real IEA HIA product


Current Status

- At least 4 different implementations with different characteristics and 3 different drivers on the way:
 - Canadian activity (Benard) based on Seaside
 - US DoE activity (Groth) Sandia QRA Toolkit based on C#
 - EC H2FC activity (diverse) based (partially) on SAGE and Model FX
 - Threat of Fragmentation
 - Too small user community and international character require agreement on common unified approach


Basic Concept for SAGE implementation: Model

Basic Concept: Super-Model

- Every model provides a function: Output = Model(Input) where with "Output" and "Input" are sets of variables
- "Super-Models" are composed of several models \rightarrow
- Recursion

Phenomena Addressed

Major Phenomena	Phenomena	Sub-Phenomena	Further Simplifications
Thermodynamics /			
State			
	Equilibrium of State		ideal gas simplifications
	Equilibrium of State		ideal gas simplifications
	Equilibrium of State		ideal gas simplifications
	Equilibrium of State		real gas model
	Equilibrium of State		real gas model
	Equilibrium of State		real gas model
Release / Mixing			
	Permeation		
	Diffusion		
	Loss of Containment		
	Loss of Containment	Pipe failure	
	Loss of Containment	Failure of sealing	
	Inventory	Premixed Gas Cloud	
	Inventory	Liquid Pool Size	
	LH2 Pool Evaporation		
	Release into Secondary Vessel (Refuelling)		
	Release into Free Environment		
	Jet Release		
	Jet Release	Free Jet	
	Jet Release	Buoyant Jet	
	Jet Release	Wall Attached Jet	
	Jet Release	Impinging Jet	
	Release into Unventilated Box	Natural Ventilation	
	Release into Unventilated Box	Forced Ventilation	

Phenomena Addressed

Ignition /			
Combustion			
	Ignition	Minimum Ignition Energy	
	Ignition	Ignition Location	
	Ignition	Ignition Time	
	Ignition	Ignition Probability	
	Flammability Limits		
	Flammability Limits		
	Laminar Flame Speed		
	Diffusion/Jet Flame		
	Flame Acceleration		
	DDT		
	DDT	Detonation Cell Size	
Structural			
Response /			
Damage			
	Thermal Loads	Human Limits	
	Thermal Loads	Structural Limits	
	Pressure Loads	Human Limits	
	Pressure Loads	Structural Limits	

H2FC-Sage-Framework (H2FC-Sage-FX)

H2FC – Sage Framework

- Free open source mathematics software framework (based on Python)
- We will use it as a kind of "open innovation": You only have to register
- User-definable models without translation into Java code by integration SAGE math server models
- You can examine existing experiments and also create and share models by yourself on our website: <u>http://sage.h2fc.eu/pub/</u>

Sage – Further information

Further information

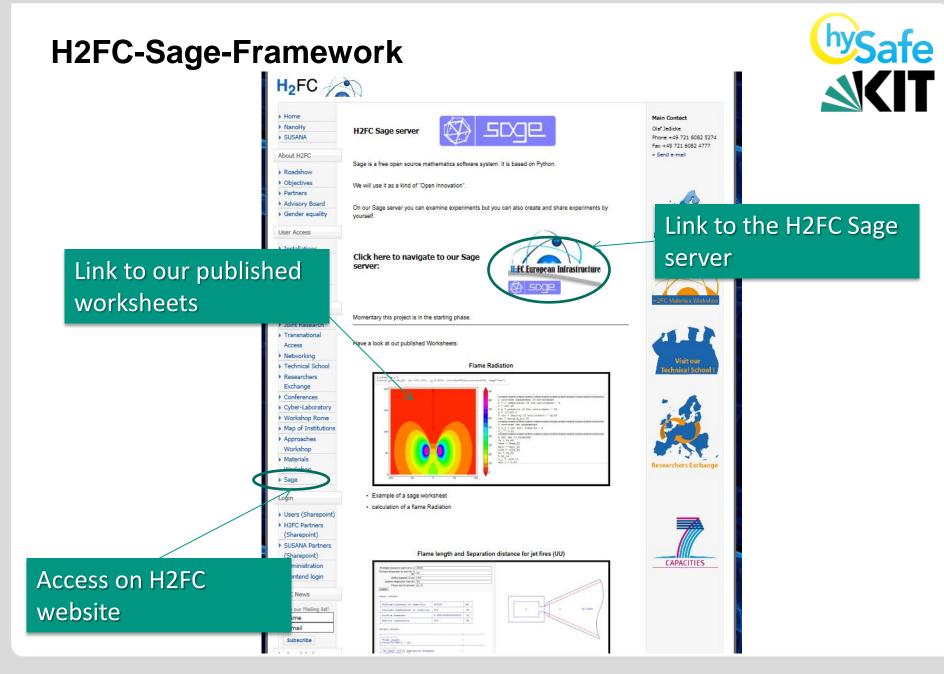
Tutorials

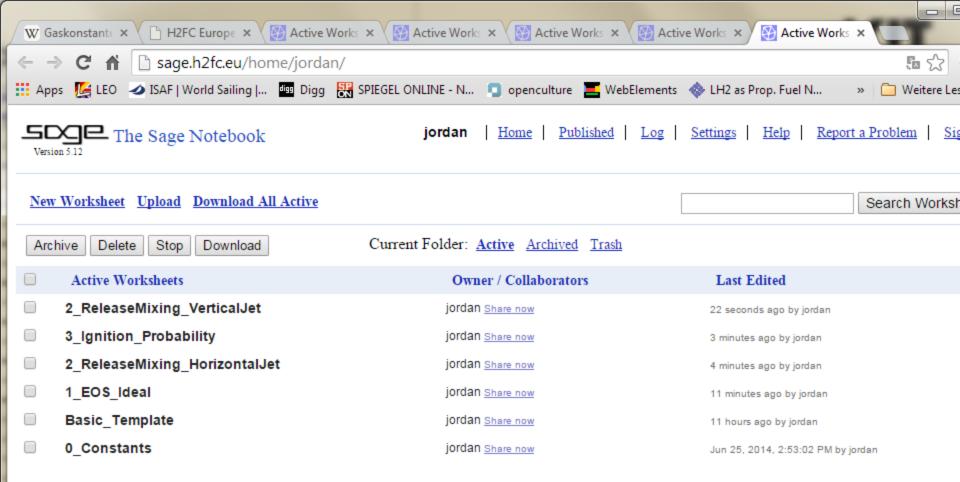
http://www.sagemath.org/doc/tutorial/

http://modular.math.washington.edu/msri06/refs/sage_tutorial.pdf

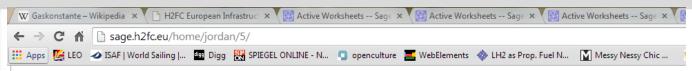
http://www.mathematik.uni-

marburg.de/~weich/Analysis2/Blaetter/Sage_Tutorial.pdf


 Link to other Sage Server Cloud solutions (not specific for hydrogen and fuel cells)


https://cloud.sagemath.com/

• See other examples


http://wiki.sagemath.org/interact/

Sage Online Demo

Rho Ideal : density / (g/m^3); P Ideal : pressure / Pa; M Ideal : mass / mol / g; T Ideal : temperature / K

Event, Phenomenon

This model implements the ideal gas equation of state (and serves as a template for further model definitions).

Physics

Simplest idealised state of a gas. Related definitions are real gas equation of state like Van-der-Wals oder Nobel-Abel.

Simplifications

Gas particles do not provide own volume and do not have interacting, attractive or disattractive forces. This implies that there is no critical state nor Joule-Thompson effect.

Implementation

Uses

Constants

Input

- lp : pressure / Pa
 lM : mass / mol / g
 lT : temperature / K
- lRho : density / (g/m^3)

Output (see header)

Formula:

Rho_Ideal(1P, 1M, 1T) = 1P * 1M / (R * 1T) T_Ideal(1P, 1M, 1Rho) = 1P * 1M / (R * 1Rho) P_Ideal(1T, 1Rho, 1M) = R * 1T * 1Rho / 1M M_Ideal(lT, lRho, lP) = R * lT * lRho / lP

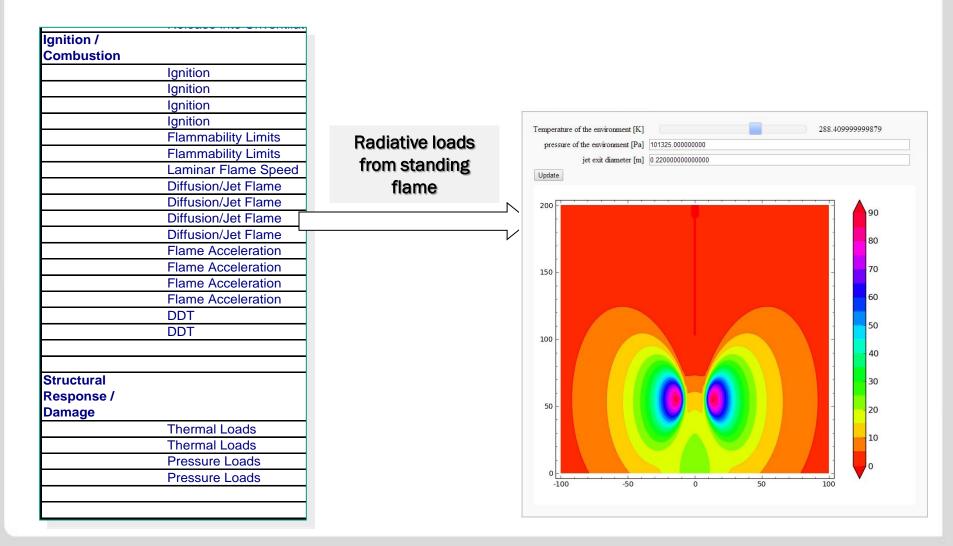
Limitations

Input variables have to be greater than 0

Reference

Kautz, Christian H., et al. "Student understanding of the ideal gas law, Part I: A macroscopic perspective." American Journal of Physics 73.11 (2005): 1055-1063.

Tests:

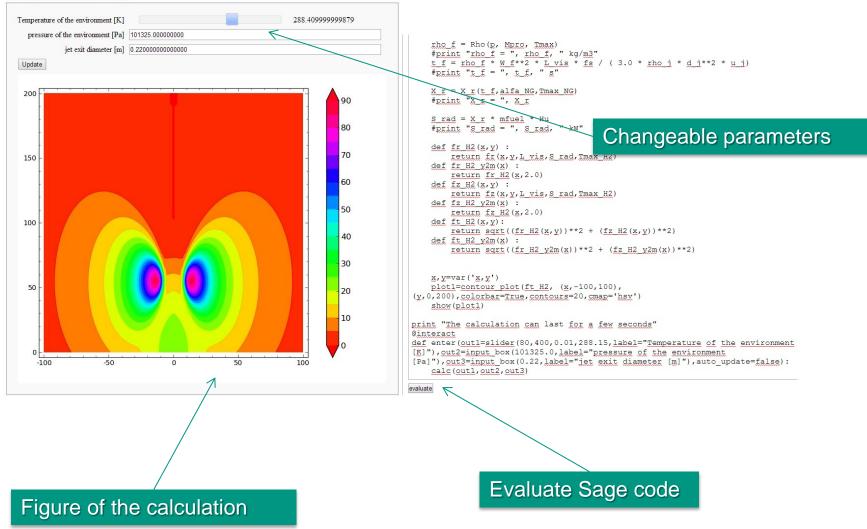

print T_Ideal(101325,2.01588,89.944) 273,133476728015 print P_Ideal(293,(14*89), 28) 108408.114090850 print Rho_Ideal(101325,2.01588,273.15) 89.9385591463465

Templated Content Implementation in Sage Simple Example: **Ideal Gas EOS**

34 Hazard Assessment Toolkit, RPW, Washington DC,10.11.2014

Complex Content Implementation in Sage Example: Flame Radiation (Houf, Hankinson,...)

ate


FlameRadiation – An interactive worksheet Example for a "Super-Model"

```
Ideal Gas EOS
# STEP 1: CALCULATE DENSITY OF AIR AND FLAME FROUDE NUMBER
                                                                                    Froude
 Fr f = (u j * fs**1.5) / (rho j / rho)**0.25 / ((Tmax/T - 1.0) * g * d j)**0.5
# STEP 2: DETERMINE DIMENSIONLESS (SCALED) VISISBLE LENGTH L star/1
 if ( Fr f < 5 ) L star = 13.5 * Fr f**0.4 / ( 1.0 + 0.07 * Fr f**2)**0.2; else L star = 23
                                                                                    *
#
# STEP 3: DETERMINE VISIBLE FLAME LENGTH L vis/m
 L vis H2 = L star * d j * sqrt(rho j / rho) / fs
                                                                                    L_vis
# STEP 4: DETERMINE VISIBLE FLAME WIDTH W f/m
 W_f_H2 = 0.17 * L_vis_H2
                                                                                    Wf
# STEP 5: DETERMINE RESIDENCE TIME t f/s
                                                                                    Rho_f
 rho f = Rho(p, Mpro, Tmax)
 t_f = rho_f * W_f_H2**2 * L_vis_H2 * fs / ( 3.0 * rho_j * d_j**2 * u_j )
#
# STEP 6: DETERMINE RADIANT FRACTION (ESCAPING THE FLAME)
                                                                                    S rad
 X r H2 = X r(t f, alfa H2, Tmax H2)
 S rad H2 = X r H2 * mfuel * Hu
```

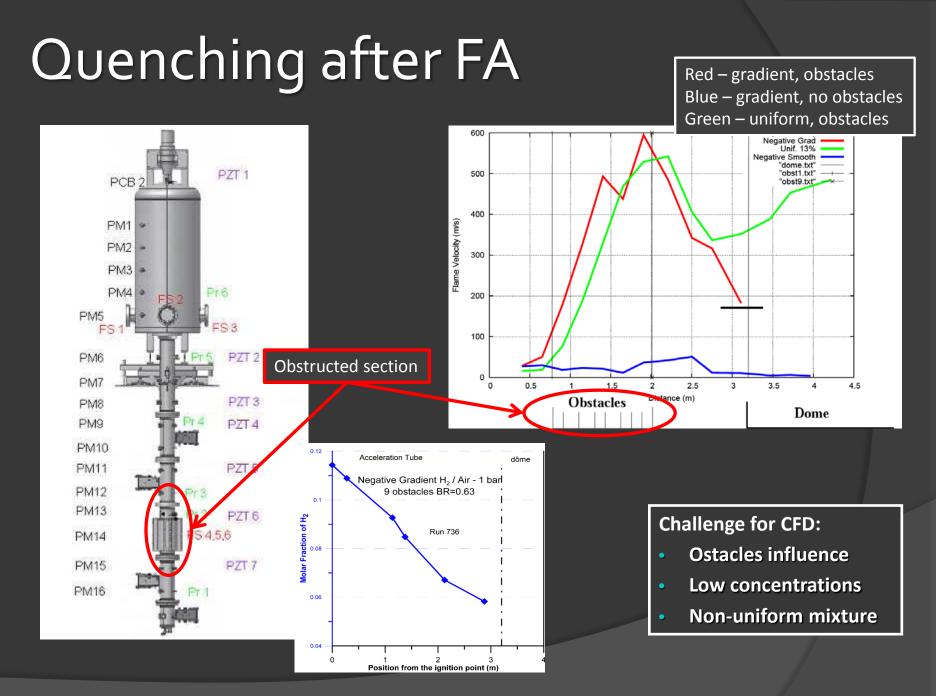
FlameRadiation – An interactive worksheet Online demo....

The calculation can last for a few seconds

Comparison of H2FC Sage FX vs H2FC Model FX

Category	H2FC Sage FX	H2FC Model FX
Structure	 Open source mathematics software system (free MATLAB alternative) Expandable accident sensitiv (some functions process slow or don't seem to work reliable) 	 Play! framework web application Proprietary solution
Interface	 Same interface for administration and user Easy scripting (PYTHON) Good collaboration platform Limited possibilities for "style" of text and pictures in normal Sage worksheets Great graphics capabilities included 	 User-friendly User can't create their own models
Availability	 No need for installation on your computer, only internet connection 	- No need for installation on your computer, only internet connection

Current Status in a typical procedure


- 1. Definition of roles and development team (possibly in the new IEA HIA safety task)
- 2. Common definition of the system Requirements
- 3. Use cases
- 4. Detailed Specification
- 5. Selection of one implementation framework
- 6. Implementation of initial content
- 7. Test
- 8. Release

prematurely without having addressed points 1. to 4. seriously

Current Status

- At least 4 different implementations with different characteristics and maturity with 3 different drivers on the way:
 - Canadian activity (Benard) based on Seaside
 - US DoE activity (Groth) Sandia QRA Toolkit based on C#
 - EC H2FC activity (diverse) based (partially) on SAGE
 - Threat of Fragmentation
 - Too small user community and international character require agreement on common unified approach

16-17 October 2012

HySafe Research Priorities Workshop, BAM, Berlin, Germany

Other demands

- Combustion of cryogenic mixtures
 - CFD: EOS for cryogenic substances
 - CFD: Multi-phase modeling (liquid and solid)
 - Laminar flame speed and other properties at T < 100 K
- Oust combustion
 - Turbulence -> particles / Particles -> turbulence interaction
 - Phenomenological models for such system
- Combustion with open end
 - In long open channels (tunnel) hydrodynamic resistance can hinder exhaust of products and promote FA
- Ourvilinear combustion
 - Possibility of the flame acceleration /deceleration connected with the flame surface change due to combustion channel curvature

Theoretical / CFD KG

For premixed cases approach which uses St(u', ...) appears to be most effective and provides generally good quality, including non-uniform mixtures and vented deflagrations, however specific modeling requires for accounting of flame instabilities

 Phenomenological models for the accounting of the specifics of the congestion are highly needed

H₂ Safety Research Needs

Article "How safe is Hydrogen?" by J. Hord: pp 615 Symposium Papers of the "Hydrogen for Energy Distribution,, Lyon, France, July 24-28, **1978!**

- Experimentally verify detonation in open air detonable clouds. (Evaluate strong initiator and the possibility of transition from deflagration to detonation in the absence of turbulence inducers).
- Confinement: (What constitutes sufficient confinement to sustain a detonation or higher order explosion?). Determine the effects of weak walls, elastic curtains, etc. on the transition to detionation, relief of deflagrations, etc.
- Model and study the effects of piping complex and turbulence-inducing appurtenances, for example, subdivisions, trees, buildings, etc. on transition to detonation