

Update on Combustion of Inhomogeneous Mixtures

T. Jordan

Hydrogen Group Institute for Nuclear and Energy Technologies (IKET)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Starting Point

. . .

Presentation of A. Kotchourko about gaps at the RPW Berlin 2012:

H₂ Safety Research Needs

- Article "How safe is Hydrogen?" by J. Hord: pp 615 Symposium Papers of the "Hydrogen for Energy Distribution,,, Lyon, France, July 24-28, **1978!**
- Separation in open air detonable clouds. (Evaluate strong initiator and the possibility of transition from deflagration to detonation in the absence of turbulence inducers).
- Confinement: (What constitutes sufficient confinement to sustain a detonation or higher order explosion?). Determine the effects of weak walls, elastic curtains, etc. on the transition to detionation, relief of deflagrations, etc.
- Model and study the effects of piping complex and turbulence-inducing appurtenances, for example, subdivisions, trees, buildings, etc. on transition to detonation

Status of Project 1501426

Development of criteria for FA and DDT Phase II

A. Friedrich, J. Grune, K. Sempert, G. Stern, G. Necker, A. Veser Pro-Science GmbH, Ettlingen

M. Kuznetsov, A. Kotchourko, T. Jordan; Karlsruher Institut für Technologie

supported by

für Wirtschaft und Technologie

Bundesministerium über die Forschungsbetreuung der

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Project 1501426 – Work Program

Part 1: Influence on obstacle geometry

- Influence of the obstacle geometry
- gap width d,
- distance s,
- shape,
- blockage ratio BR.
- With and without vertical concentration gradient

Part 2: Fast flame propagation in unobstructed partiallyopen flat layers

- Short effective booster
 → starting with fast flame, detonation
 - ➔ propagation in free channel
- **AREVA:** Effect of grids as real obstacles?

- Concentration gradient:
 - vertical (positive/negative)
 - horizontal
- Ignition on top and bottom
- Production of the gradient mixtures

In total: 114 experiments conducted in the horizontal channel in H110

Project 1501426 – Part 3

Status of Part 3

- Vertical channel (0,4 m x 0,4 m x 6 m) installed in V30
- Preparation experiments also in small scale for opening of the plastic
- Intrumentation almost finished

Some Results of Part 2

Limits of the Detonation Propagation in stratified H₂/air Mixtures in Patially Open Channel without Obstables (without grid)

Investigation of the detonation onset in H_2 /air mixtures

Homogeneos H_2 /air layer with plastic cover: Variation = layer height h und H_2 concentration

Stratified H₂/air layer:

Variation = Gradient, height and maximum concentration in gradient mixture

For initiation of detonation injection of additional hydrogen in the booster is required

Limits of the Detonation Onset in homogeneous H₂/air mixtures

spreads predominantly in a sub-layer immediately under the ceiling

Detonation cell size λ = reactivity scale

Instrumentation

16 x pressure probes

12 x ionisation probes

Up to 48 smoked plates (at ceiling and on side walls)

High speed video camera pointing at smoked plate (0,5 m x 1 m)

High speed video arrangement

Test Matrix

hySaf	e

Nir	max 420/	Cradiantan	h yon o	Detenstion	Zusatz H2-	
	Decke	Art	(20,5 % H2)	im Booster	in Booster	Detonation in Testschicht
294	28,7	2200 /80	31,7	ја	nein	ja
295	26,4	2000 /80	21,64	ја	nein	Ja
296	23,9	1800 /80	12,88	nein	nein	
297	23,9	1800 /80	12,88	nein	nein	
298	23,9	1800 /80	12,88	ја	Ja	ja
299	22,0	1700 /80	6,0	nein	Ja	
300	22,0	1700 /80	6,0	nein	Ja	
301	22,0	1700 /80	6,0	nein	Ja	
302	22,0	1700 /80	6,0	nein	Ja	
303	22,0	1700 /80	6,0	nein	Ja	
304	22,0	1700 /80	6,0	nein	Ja	
305	22,0	1700 /80	6,0	nein	Ja	
306	22,0	1700 /80	6,0	ја	Ja	nein
307	22,95	1750 /80	9,43	ја	Ja	nein
308	30,67	1600 / 100	17,5	ја	nein	ja
309	27,98	1500 / 100	13,67	ја	nein	Ja
310	25,29	1400 / 100	8,65	ја	Ja	nein
311	26,64	1450/100	12,0	ја	Ja	ја
312	22,7	1350/100	3,06	ја	Ja	nein
313	41,24	2200 / 100	38,7	nein	nein	
314	41,24	2200 / 100	38,7	ja	O2-Injehtion	Ja

Hazard Assessment Toolkit, RPW, Washington DC,10.11.2014

Side wall

GRS 294 (C_{max} = 28,7 %)

 $h_{Det} = 31 - 35 \text{ cm}$

Side wall, zooming in

GRS 298 (C_{max}=23,9 %)

Intermediate Summary

Homogeneous mixtures:

 $\boldsymbol{C}_{\text{H2}}$ and layer height \boldsymbol{h}

Gradient mixtures:

 $C_{max (grad)}$ eand effective layer height h_{Det} grad

Results

- Improved understanding of detonation stability
- Extended robust criteria for FA and DDT in half open flat layers with stratified gradient mixtures

To be accomplished for vertical arrangement