

HySafe Research Priorities Workshop Washington DC, 10-11 November 2014

Delayed ignition deflagrations: initial trials with Ulster model

Dmitry Makarov, Boris Chernyavskiy, Vladimir Molkov Hydrogen Safety Engineering and Research Centre (HySAFER)http://hysafer.ulster.ac.uk/

Justification and drivers

- To be able to correctly design an effective vent for deflagration mitigation is an essential safety feature of emerging hydrogen infrastructure
- Real-life industrial accident scenarios include formation of gradient mixtures, delayed ignition of turbulent hydrogen jet inside containers and enclosures, and combustion of nonhomogeneous flammable composition.
- Delayed ignition is a knowledge gap for both CFD and analytical models
- Modelling and correlations for delayed ignition of hydrogen jets in vented enclosures is a subject of FCH JU Call for proposals FCH-04.3-2014 "Pre-normative research on vented deflagrations in containers and enclosures for hydrogen energy applications"

HSL experiment WP3/25 (HyIndoor project)

- Arr Explosion box 2.5 \times 2.5 \times 5.0 m (31 m³)
- Release rate 600 NL/min for 69 sec (0.69 m³ H₂), Ø10 mm
- Ignition 1.5 m above the release point
- Single vent opening 0.224 m². Vent opens @2.8kPa.

Release CFD model

Solver:

- incompressible, pressure-based segregated
- SIMPLE pressure-velocity coupling
- 3rd order discretisation scheme MUSCLE

Domain:

- HSL enclosure only, 2 small outflow openings
- 721,100 hexahedral CVs mesh
- Inflow pipe resolution 3×3 CVs

Model:

- mass, momentum, energy, non-reacting H₂ transport
- \circ realisable **k-** ϵ model turbulence model
- time step ∆t=0.01s, 50 iter/time step
- CFD engine: FLUENT

Release CFD results (1/2)

Mesh

Release CFD results (1/2)

Good agreement with experimental data

Deflagration CFD model

Solver:

- compressible, density based coupled
- 2nd order upwind scheme
- Explicit time stepping, CFL=0.8

Domain:

- HSL enclosure + external area
- 852,220 tetrahedral CVs mesh
- Initial H₂ distribution exported from release solution, volumetric release to reproduce continues H₂ jet
- University of Ulster LES combustion model:
 - RNG LES for turbulence modelling
 - UU multi-phenomena combustion model
 - Maximum Karlovitz and leading point factors from t=0 s
- Continues ignition source

Flame propagation dynamics

Pressure dynamics

Deflagration CFD results

- Captured flame propagation through
 - jet area
 - non-uniform H₂-air layer under cealing
- Qualitative agreement with experimental pressure dynamics
- Relatively slow pressure dynamics at initial moment
- More research effort is needed
 - to obtain detailed experimental data to allow insight into physical phenomena for model validation
 - to resolve turbulent flame propagation and deflagration dynamics in turbulent jet area

