

HySafe Research Priorities Workshop Washington DC, 10-11 November 2014

Correlations for venting of localized and full volume deflagrations in low strength equipment and buildings

Boris Chernyavsky, Dmitry Makarov, Vladimir Molkov Hydrogen Safety Engineering and Research Centre (HySAFER) v.molkov@ulster.ac.uk, http://hysafer.ulster.ac.uk/

Vented deflagration pressure dynamics

Introducing burning velocity

$$\frac{dn_b}{d\tau} = 3 \left[\chi \, \pi^{\varepsilon + 1/\gamma_u} \left(1 - n_u \pi^{-1/\gamma_u} \right)^{2/3} + (1 - A) R_b^{\#} W \right]$$

$$\frac{dn_{u}}{d\tau} = -3 \left[\chi \, \pi^{\varepsilon + 1/\gamma_{u}} \left(1 - n_{u} \, \pi^{-1/\gamma_{u}} \right)^{2/3} + (1 - A) R_{u}^{\#} W \right]$$

where $\tau = t S_{ui}/a$ - non-dimensional time,

$$R_{u}^{\#} = \left\{ (2\gamma_{u})/(\gamma_{u}-1)\pi_{m}\sigma_{u} \left[(1/\pi_{m})^{2/\gamma_{u}} - (1/\pi_{m})^{1+1/\gamma_{u}} \right] \right\}^{1/2} \qquad Br = \frac{c_{ui}/S_{ui}}{E_{i}-1} \cdot \frac{F}{V^{2/3}}$$

$$W = \frac{1}{(36\pi_0)^{1/3}} \frac{\mu F}{\sqrt{\gamma_u}} \frac{c_{ui}}{S_{ui}}$$

y equation becomes
$$Br_i = \frac{\sqrt{E_i/\gamma}}{\sqrt[3]{36\pi_0}} \cdot \frac{Br}{\chi/\mu}$$

energy equation becomes

$$\frac{d\pi}{d\tau} = \frac{\chi Z \pi^{\varepsilon+1/\gamma_u} \left(1 - n_u \pi^{-1/\gamma_u}\right)^{2/3} - \gamma_b W \left[(1 - A)R_u^{\#} + AR_b^{\#} \frac{\pi^{1/\gamma_u} - n_u}{n_b}\right]}{\left(\pi^{1/\gamma_u} - \frac{\gamma_u - \gamma_b}{\gamma_u} n_u\right) \frac{1}{3\pi}}$$

Deflagration–Outflow Interaction (DOI) number

The main unknown in the $\Delta \pi_m = \lambda (Br_r)^{-\sigma}$ correlation is Deflagration-Outflow Interaction (DOI) factor χ/μ .

It can be calculated as a product of flame wrinkling factors:

$$\chi/\mu = \Xi_K \Xi_{LP} \Xi_{FR} \Xi_{u'} \Xi_{AR} \Xi_{O}$$

- Ξ_{κ} Karlowitz wrinkling factor due to the turbulence generated by the flame front itself
- Ξ_{LP} leading point wrinkling factor
- $\Xi_{\rm FR}$ wrinkling factor due to fractal increase of flame surface area
- $\Xi_{\mu'}$ wrinkling factor to account for initial turbulence
- Ξ_{AR} increase of flame area due to enclosure elongation
- Ξ_o factor arising due to the turbulence in presence of obstacles

Karlowitz wrinkling factor

 $\chi/\mu = \Xi_K \Xi_L \Xi_F \Xi_R \Xi_R$ Karlowitz wrinkling factor appears due to the turbulence generated by the flame front itself $\Xi_{\kappa}^{\text{m}} \stackrel{\text{a}_{x}}{=} (E_{i}-1)/\sqrt{3}$ where E_i is the combustion products expansion coefficient, dependent on the hydrogen mole fraction.

 Ξ_{K} is calculated as $\Xi_{K} = \psi \cdot \Xi_{K}^{m a}$

where empirical coefficient Ψ is taken to be equal 0.75

Leading point concept wrinkling factor

 $\chi/\mu = \Xi_K \Xi_L \Xi_F \Xi_R \Xi_R$

Leading point wrinkling factor appears due to the preferential diffusion of hydrogen in the stretched turbulent flame brush. It is a function of hydrogen mole fraction in hydrogen—air mixture

Fractal flame structure wrinkling factor

 $\chi/\mu = \Xi_K \Xi_L \Xi_F \Xi_R \Xi_R$

Fractal wrinkling factor

 $\Xi_{F} = (R / R_o)^{D-2}$ appears due to the fractal increase of flame front area which occurs when the flame radius exceeds characteristic radius R_0 of transition from Laminar to turbulent flame.

Radius *R* is considered to be limited by enclosure dimensions $R = \sqrt[3]{3V/4\pi_0}$, where π_0 is 3.1415... and *D* = 2.33 (Bradley, 1999)

Initial turbulence wrinkling factor 1/2

 $\chi/\mu = \Xi_K \Xi_L \Xi_F \Xi_R \Xi_R$

Wrinkling factor due to the presence of turbulence in unburned mixture can be expressed through turbulent flame velocity $\Xi_{\mu'} = S_t / S_W^{SGS}$ Using modified Yakhot's equation (Molkov, 2012) by substitution of laminar burning scale wrinkled flame velocity RMS velocity in unburned mixture

Initial turbulence wrinkling factor 2/2

Maximum overpressure during deflagration is determined by the fastest burning rate, which is achieved when flame approaches enclosure walls and is affected by all wrinkling factors. S_u in Yakhot's original equation can thus be replaced by SGS wrinkled flame velocity $S_W^{SGS} = S_u \cdot \Xi_K \cdot \Xi_{LP} \cdot \Xi_{FR} \cdot \Xi_{AR} \cdot \Xi_O$

Turbulent burning velocity S_{t} can now be found by solving equation

$$S_t = S_W^{SGS} \cdot \left(\frac{u'}{S_t}\right)^2$$
 numerically and wrinkling factor $\Xi_{u'} = S_t / S_W^{SGS}$

can be determined.

Aspect ratio & Obstacles wrinkling factors

 $\chi/\mu = \Xi_K \Xi_L \Xi_F \Xi_R \Xi_R$

Aspect ratio wrinkling factor $\Xi_{AR} = A_{EW} / A_S$ characterize the increase of the flame front surface area due to enclosure elongation, where A_{EW} is the internal surface area of the enclosure and A_S is the surface area of the sphere of the same volume with radius R. $R = \sqrt[3]{3V / 4\pi_0}$

Wrinkling factor due to the presence of obstacles Ξ_o is considered equal unity for the majority of the experiments involving in development of present correlation.

New experiments used in the correlation derivation

KIT experimental facility (1/2)

- \succ L×H×W=0.98×1.00×0.96 m
- \succ Vent openings: from 0.10 \times 0.10 m to 1.00 \times 0.96 m
- Concentration range: 10 to 50% hydrogen by volume

Sensor	x [mm]	y [mm]	z [mm]
P01	746	0	-500
P02	0	0	0
KU1	0	0	25
P03	494	0	-500
KU2	518	0	-500
P04	0	0	250
P09	1220	0	0
P05	1720	0	0
P06	2220	0	0
P07	2720	0	0
P08	3220	0	0
KU3	4220	0	0
KU4	5220	0	0

	IG1	25	0	0
_	IG2	490	0	0
,	IG3	955	0	0

KU4

Sensor	x [mm]	y [mm]	z [mm]
T01	490	0	500
T02	895	-395	500
T03	0	420	-480

Sensor	x [mm]	y [mm]	z [mm]
T04	1102	0	-450
T05	1240	0	½ VO*
T06	1490	0	½ VO*
T07	1990	0	½ VO*
T08	2490	0	1⁄2 VO*
T09	2990	0	1⁄2 VO*
T10	3990	0	1⁄2 VO*
* 1/2 VO: Half of vent opening heigh			

* ½ VO: H	alf of vent of	pening heig
(=	= upper rim o	f opening)

KIT experimental facility (2/2)

Spark ignition location:

 Near middle of front wall;
 Near the centre of the enclosure;
 Near middle of the rear wall;
 Near middle of the rear wall;
 At the rear wall under top plate

200 Hz FFT filter applied to readings -0.

HSL experimental facility (1/2)

>L \times H \times W=5.00 \times 2.50 \times 2.50 m

➤Two series of experiments:

- Series 1: 1, 2 and 4 roof vents 0.8 m² each;
- Series 2: 2 and 4 0.83 x 0.27 m side vents.
- Hydrogen is supplied through 4 nozzles in the floor

25 Hz filter is applied to pressure data

HSL experimental facility (2/2)

Institute National des Sciences Appliques (INSA) experimental facility

- L×H×W=0.15×0.15×0.15 m
- Five vent sizes: 225, 81, 49, 25 and 9 cm²
- Vents are covered with a film with 3 kPa burst pressure
- Three ignition locations: near front wall, in the centre and near far wall
- All experiments used 30% hydrogen-air mixture by volume
- 1.5 kHz low pass filter applied for pressure data processing

Updated vented deflagration correlation

With all wrinkling factor coefficients defined, Deflagration-Outflow Interaction (DOI) number χ/μ can be found and experimental data can be put on the plot in order to determine coefficients in the equation $\pi_{red} = \lambda \cdot Br_t^{-\sigma}$

In addition to recent HSL, INSA (published as Rocourt et al., 2014) and KIT data obtained in 2013-14, the following previous experimental results had been used in producing the correlation for vented deflagration:

- Kumar (2006)
- Kumar (2009)
- Pasman et al. (1974)
- Daubech et al. (2011, 1 m³)
- Daubech et al. (2011, 10.5 m³)
- Bauwens et al. (2011)
- Bauwens et al. (2012)

Updated vent sizing correlation

Plotting all experimental data in double logarithmic scale in π_{red} versus Br_t produces best fit correlation $\pi_{red} = 0.23 \cdot Br_t^{-1.06}$ and conservative correlation $\pi_{red} = 0.91 \cdot Br_{\star}^{-1.06}$

Note there are two outlying points in the correlation, which increase the spread between best fir and conservative correlations.

Outlying point 1 corresponds to Kumar (2004) experiment experiencing 1 sec delay between vents opening. Outlying point 2 corresponds to KIT experiment HIWP3-39 in which there was a gas leak through the enclosure walls edge resulting in an additional pressure relief.

Vent sizing procedure (brief overview)

With the empirical coefficients in the formula $\pi_{red} = \lambda \cdot Br_t^{-\sigma}$ known it is possible to use it find vent size required to keep overpressure below specified limit.

The algorithm involves:

- □ Selecting maximum acceptable overpressure
- □ Using correlation to find corresponding turbulent Bradley number Br_t
- Calculating the DOI factor by evaluating all flame wrinkling factors based on known enclosure geometry and hydrogen concentration
- Calculating Bradley number
- □ Finding out required vent area

Layered and gradient concentration localised mixtures

Localised mixture vented deflagrations

Different representation $W = \frac{\chi (E_i - 1) E_i^{2/3}}{[2(\pi - 1)]^{1/2}} n_m^{2/3}$

 \Box Assuming $M_m \approx M_{air}$ $\Box \Rightarrow \omega_{ui} \approx n_{ui}$ and

□ Mass fraction of combustible fuel-air mixture

Mass of air in localised hydrogen-air mixture

Expression for vol. fraction of fuel-air mixture Φ

$$\Phi = \frac{\left(V_g + V_{v'}\right)}{\left(V_g + V_{v}\right)} = \dots = \frac{1}{\varphi} \frac{1}{1 + \frac{m_v}{m_g} \frac{M_g}{M_v}} \implies \frac{m_v}{m_g} = \frac{M_v}{M_g} \left(\frac{1}{\Phi\varphi} - 1\right) + \left(\frac{1}{\varphi} - 1\right) \frac{M_v}{M_g} \frac{M_g}{M_v}$$

□ Vol. fraction of the local flammable fuel-air mixture $n_m = \frac{(\psi) f M_g}{1 + (\frac{1}{\Phi \varphi} - 1) \frac{M_v}{M_g}}$ □ and:

$$\Delta \pi_{m} = \begin{cases} Br_{t}^{-1} \left(\frac{(E_{i} / \gamma)^{1/2} E_{i}^{2/3}}{\sqrt{2}} \right) \left(\frac{1 + \left(\frac{1}{\varphi} - 1 \right) \frac{M_{a}}{M_{f}}}{1 + \left(\frac{1}{\Phi \varphi} - 1 \right) \frac{M_{a}}{M_{f}}} \right) \end{cases}$$

$$n_m = \frac{M_v \left(1 - \varphi\right) + M_g \varphi}{M_g \varphi \left(\frac{m_v}{m_g} + 1\right)}$$

 $n_m = \left(m_g + m_v\right) / \left(m_g + m_v\right)$

Layered mixture deflagration

□ Vented deflagration of the layered mixture model:

$$\Delta \pi_{m} = \left\{ \left(\frac{\mu}{\chi} \frac{(E_{i}/\gamma)^{1/2}}{(36\pi)^{1/3}} \frac{c_{ui}/S_{ui}}{E_{i}-1} \frac{F}{V^{2/3}} \right)^{-1} \left(\frac{(E_{i}/\gamma)^{1/2} E_{i}^{2/3}}{\sqrt{2}} \right) \Phi^{2/3} \right\}^{2} Br_{t}$$

Correlation will be sought in the form similar to the uniform mixture deflagration:

$$\Delta \pi_{m} = A \left(Br_{t} \right)^{-B} \left\{ \left(\frac{(E_{i} / \gamma)^{1/2} E_{i}^{2/3}}{\sqrt{2}} \right) \Phi^{2/3} \right\}^{B}$$

Hydrogen gradient mixtures (1/2)

- $\hfill\square$ Analytical expression for overpressure is function of unburnt mixture volume fraction Φ
- Previous studies conclusion: maximum overpressure depends mainly on fraction of mixture with largest burning velocity (mixtures with hydrogen concentration about 20-50% by volume in air)
- Φ is calculated taking into account only a fraction of total hydrogen volume in enclosure (within a range of high burning velocities)

Hydrogen gradient mixtures (2/2)

Two ways of the gradient layer processing

H₂, % v/v

Calculations based on H₂ mass conservation (Φ =0.55) Calculations based on the (0.7 – 1.0)· S_u (Φ =0.19)

Best fit correlation (localised)

Concluding remarks

This study:

- Development of analytical model for maximum overpressure in a vented deflagration of layered fuel-air mixture is demonstrated
- The theory-based correlation was developed based on the experimental data obtained at KIT and HSL, best fit correlation was achieved with coefficients A=0.09, B=1.06
- Correlation is conservative on the given set of experimental data with coefficients A=0.25, B=1.06
- Validation on a wider range of experimental data (vessel volume, vent size, mixture parameter) is required

) Outstanding issues:

- Delayed ignition
- Effect of obstacles
- Inertial vent covers
- More experimental data on localised mixture vented deflagrations

Acknowlegements: authors are grateful to FCH JU for funding through the HyIndoor project (www.hyindoor.eu)